修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

829 条数据
?? 中文(中国)
  • Site-controlled formation of single Si nanocrystals in a buried SiO <sub/>2</sub> matrix using ion beam mixing

    摘要: For future nanoelectronic devices – such as room-temperature single electron transistors – the site-controlled formation of single Si nanocrystals (NCs) is a crucial prerequisite. Here, we report an approach to fabricate single Si NCs via medium-energy Si+ or Ne+ ion beam mixing of Si into a buried SiO2 layer followed by thermally activated phase separation. Binary collision approximation and kinetic Monte Carlo methods are conducted to gain atomistic insight into the influence of relevant experimental parameters on the Si NC formation process. Energy-filtered transmission electron microscopy is performed to obtain quantitative values on the Si NC size and distribution in dependence of the layer stack geometry, ion fluence and thermal budget. Employing a focused Ne+ beam from a helium ion microscope, we demonstrate site-controlled self-assembly of single Si NCs. Line irradiation with a fluence of 3000 Ne+/nm2 and a line width of 4 nm leads to the formation of a chain of Si NCs, and a single NC with 2.2 nm diameter is subsequently isolated and visualized in a few nanometer thin lamella prepared by a focused ion beam (FIB). The Si NC is centered between the SiO2 layers and perpendicular to the incident Ne+ beam.

    关键词: phase separation,Monte Carlo simulations,single electron transistor,ion beam mixing,helium ion microscopy

    更新于2025-11-21 11:20:48

  • Influence of RbF post deposition treatment on heterojunction and grain boundaries in high efficient (21.1%) Cu(In,Ga)Se2 solar cells

    摘要: Post deposition treatments (PDT) by alkali fluorides applied to chalcopyrite-based absorbers have produced record efficiencies in thin-film solar devices in the past few years and recently the efficiency of 22.6 % was achieved with Cu(In,Ga)Se2 (CIGS) using rubidium fluoride (RbF) PDT. However, the effects of RbF-PDT towards changes in its interfacial and grain boundary (GB) properties are still not fully understood. In this work, cells with efficiency higher than 21% are investigated by combination of atom probe tomography (APT) and transmission electron microscopy (TEM) to show how changes in GB and interface chemistry may facilitate high efficiencies. APT studies, carried out at the interface between CIGS absorber and solution-grown CdS buffer layer, show In enrichment and Cu depletion along with traces of Rb. Our APT studies reveal higher amounts of Rb (1.5 at. %) and lower amounts of Na and K (<0.5 at. %) at GBs as compared with previous studies (on non-PDT samples) thus indicating substitution of Na and K by Rb. However, concentration of all alkali elements inside the grain bulk is below detection limit of APT. The concentration of Rb at the GBs in CIGS is measured depth-dependent using both APT and TEM, which consistently shows the increase in Rb towards the Mo back contact. In addition, a pronounced Cu depletion is observed at the GBs which might enhance hole-barrier properties of the GBs, thus improving charge carrier collection and hence the overall efficiency of the device. Thus, understanding effects of RbF-PDT at the atomic scale provides new insights concerning the further improvement of CIGS absorber and interfaces.

    关键词: Cu(In,Ga)Se2,Thin-film solar cell,heterojunction,atom probe tomography,post deposition treatments,transmission electron microscopy

    更新于2025-11-21 11:20:48

  • Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis

    摘要: WE43, a magnesium alloy containing yttrium and neodymium as main alloying elements, has become a well-established bioresorbable implant material. Implants made of WE43 are often fabricated by powder extrusion and subsequent machining, but for more complex geometries laser powder bed fusion (LPBF) appears to be a promising alternative. However, the extremely high cooling rates and subsequent heat treatment after solidification of the melt pool involved in this process induce a drastic change in microstructure, which governs mechanical properties and degradation behaviour in a way that is still unclear. In this study we investigated the changes in the microstructure of WE43 induced by LPBF in comparison to that of cast WE43. We did this mainly by electron microscopy imaging, and chemical mapping based on energy-dispersive X-ray spectroscopy in conjunction with electron diffraction for the identification of the various phases. We identified different types of microstructure: an equiaxed grain zone in the center of the laser-induced melt pool, and a lamellar zone and a partially melted zone at its border. The lamellar zone presents dendritic lamellae lying on the Mg basal plane and separated by aligned Nd-rich nanometric intermetallic phases. They appear as globular particles made of Mg3Nd and as platelets made of Mg41Nd5 occurring on Mg prismatic planes. Yttrium is found in solid solution and in oxide particles stemming from the powder particles’ shell. Due to the heat influence on the lamellar zone during subsequent laser passes, a strong texture developed in the bulk material after substantial grain growth.

    关键词: Rapid solidification,Microstructure,Bone scaffolds,Electron microscopy,Biodegradable implants,WE43,Laser powder bed fusion,Magnesium

    更新于2025-11-21 11:20:48

  • Visualizing Cell-Laden Fibrin-Based Hydrogels using Cryogenic Scanning Electron Microscopy and Confocal Microscopy

    摘要: The present investigation explores the microscopic aspects of cell-laden hydrogels at high resolutions, using three-dimensional cell cultures in semi-synthetic constructs that are of very-high water content (>98% water). The study aims to provide an imaging strategy for these constructs, while minimizing artifacts. Constructs of PEG-fibrinogen (PEG-Fb) and fibrin hydrogels containing embedded mesenchymal cells (human dermal fibroblasts) were first imaged by confocal microscopy. Next, high resolution scanning electron microscopy (HR-SEM) was used to provide images of the cells within the hydrogels, at submicron resolutions. Because it was not possible to obtain artifact-free images of the hydrogels using room-temperature HR-SEM, a cryogenic HR-SEM (cryo-HR-SEM) imaging methodology was employed to visualize the sample while preserving the natural hydrated state of the hydrogel. The ultrastructural details of the constructs were observed at subcellular resolutions, revealing numerous cellular components, the biomaterial in its native configuration, and the uninterrupted cell membrane as it relates with the biomaterial in the hydrated state of the construct. Constructs containing microscopic albumin microbubbles were also imaged using these methodologies to reveal fine details of the interaction between the cells, the microbubbles and the hydrogel. Taken together with the confocal microscopy, this imaging strategy provides a more complete picture of the hydrated state of the hydrogel network with cells inside. As such, this methodology addresses some of the challenges of obtaining this information in amorphous hydrogel systems containing a very-high water content (>98%) with embedded cells. Such insight may lead to better hydrogel-based strategies for tissue engineering and regeneration.

    关键词: Fibrin,Electron Microscopy,Hydrogel,Tissue Engineering,Scaffold,Confocal Microscopy

    更新于2025-11-21 11:08:12

  • Three-Dimensional Segmentation and Quantitative Measurement of the Aqueous Outflow System of Intact Mouse Eyes Based on Spectral Two-Photon Microscopy Techniques

    摘要: PURPOSE. To visualize and quantify the three-dimensional (3D) spatial relationships of the structures of the aqueous outflow system (AOS) within intact enucleated mouse eyes using spectral two-photon microscopy (TPM) techniques. METHODS. Spectral TPM, including two-photon autofluorescence (TPAF) and second-harmonic generation (SHG), were used to image the small structures of the AOS within the limbal region of freshly enucleated mouse eyes. Long infrared excitation wavelengths (930 nm) were used to reduce optical scattering and autofluorescent background. Image stacks were collected for 3D image rendering and structural segmentation. For anatomical reference, vascular perfusion with fluorescent-conjugated dextran (150 KDa) and trans-corneal perfusion with 0.1 lm fluorescent polystyrene beads were separately performed to identify the episcleral veins (EV) and the trabecular meshwork (TM) and Schlemm's canal (SC), respectively. RESULTS. Three-dimensional rendering and segmentation of spectral two-photon images revealed detailed structures of the AOS, including SC, collector channels (CC), and aqueous veins (AV). The collagen of the TM was detected proximal to SC. The long and short axes of the SC were 82.2 ± 22.2 μm and 6.7 ± 1.4 μm. The diameters of the CC averaged 25.6 ± 7.9 μm where they originated from the SC (ostia), enlarged to 34.1 ± 13.1 μm at the midpoint, and narrowed to 18.3 ± 4.8 μm at the junction of the AV. The diameter of the AV averaged 12.5 ± 3.4 μm. CONCLUSIONS. Spectral TPM can be used to reconstruct and measure the spatial relationships of both large and small AOS structures, which will allow for better understanding of distal aqueous outflow dynamics.

    关键词: second-harmonic generation,aqueous outflow,nonlinear microscopy,glaucoma,two-photon fluorescence microscopy

    更新于2025-11-21 11:08:12

  • Super-resolution microscopy reveals significant impact of M2e-specific monoclonal antibodies on influenza A virus filament formation at the host cell surface

    摘要: Influenza A virions are highly pleomorphic, exhibiting either spherical or filamentous morphology. The influenza A virus strain A/Udorn/72 (H3N2) produces copious amounts of long filaments on the surface of infected cells where matrix protein 1 (M1) and 2 (M2) play a key role in virus filament formation. Previously, it was shown that an anti-M2 ectodomain (M2e) antibody could inhibit A/Udorn/72 virus filament formation. However, the study of these structures is limited by their small size and complex structure. Here, we show that M2e-specific IgG1 and IgG2a mouse monoclonal antibodies can reduce influenza A/Udorn/72 virus plaque growth and infectivity in vitro. Using Immuno-staining combined with super-resolution microscopy that allows us to study structures beyond the diffraction limit, we report that M2 is localized at the base of viral filaments that emerge from the membrane of infected cells. Filament formation was inhibited by treatment of A/Udorn/72 infected cells with M2e-specific IgG2a and IgG1 monoclonal antibodies and resulted in fragmentation of pre-existing filaments. We conclude that M2e-specific IgGs can reduce filamentous influenza A virus replication in vitro and suggest that in vitro inhibition of A/Udorn/72 virus replication by M2e-specific antibodies correlates with the inhibition of filament formation on the surface of infected cells.

    关键词: influenza A virus,viral replication,super-resolution microscopy,filament formation,M2e-specific monoclonal antibodies

    更新于2025-11-21 11:08:12

  • Evaluation of various tissue-clearing techniques for the three-dimensional visualization of liposome distribution in mouse lungs at the alveolar scale

    摘要: Purpose: To develop a three-dimensional visualization method for evaluating the distribution of pulmonary drug delivery systems and compare four tissue-clearing techniques (ClearT2, CUBIC, ScaleS, and SeeDB2) using intrapulmonary liposomes as drug carriers. Methods: Rhodamine B-labeled liposomes were administered intrapulmonarily to mice using a MicroSprayer, and then fluorescent-labeled tomato lectin was administered intravenously to visualize the general lung structure. Tissue-clearing treatment of the mouse lungs was performed using the standard protocols of the ClearT2, CUBIC, ScaleS, and SeeDB2 techniques. Lung clearing was clarified using laser-scanning confocal microscopy, and three-dimensional images were reconstructed. Results: Fluorescent-labeled tomato lectin was preserved using ClearT2 and SeeDB2 but not using CUBIC and ScaleS. In addition, the liposomes were stable in ClearT2 reagent, but they were mostly degraded in other reagents by surface-active agents. ClearT2 treatment enabled the three-dimensional visualization of intrapulmonary rhodamine B-labeled liposomes at the alveolar scale. Conclusions: These results suggest that the ClearT2 tissue-clearing technique was appropriate for the three-dimensional visualization of intrapulmonary liposomes at the alveolar scale. This study provides important information for selecting and optimizing suitable optical tissue-clearing techniques in lungs for evaluating the distribution of pulmonary drug delivery systems.

    关键词: fluorescence preservation,Intrapulmonary distribution,inhalation,liposomes,drug delivery systems,laser-scanning confocal microscopy

    更新于2025-11-21 11:08:12

  • Optimized signal-to-noise ratio with shot noise limited detection in Stimulated Raman Scattering microscopy

    摘要: We describe our set-up for Stimulated Raman Scattering (SRS) microscopy with shot noise limited detection for a broad window of biologically relevant laser powers. This set-up is used to demonstrate that the highest signal-to-noise ratio (SNR) in SRS with shot noise limited detection is achieved with a time-averaged laser power ratio of 1:2 of the unmodulated and modulated beam. In SRS, two different coloured laser beams are incident on a sample. If the energy difference between them matches a molecular vibration of a molecule, energy can be transferred from one beam to the other. By applying amplitude modulation to one of the beams, the modulation transfer to the other beam can be measured. The efficiency of this process is a direct measure for the number of molecules of interest in the focal volume. Combined with laser scanning microscopy, this technique allows for fast and sensitive imaging with sub-micrometre resolution. Recent technological advances have resulted in an improvement of the sensitivity of SRS applications, but few show shot noise limited detection. The dominant noise source in this SRS microscope is the shot noise of the unmodulated, detected beam. Under the assumption that photodamage is linear with the total laser power, the optimal SNR shifts away from equal beam powers, where the most signal is generated, to a 1:2 power ratio. Under these conditions the SNR is maximized and the total laser power that could induce photodamage is minimized. Compared to using a 1:1 laser power ratio, we show improved image quality and a signal-to-noise ratio improvement of 8 % in polystyrene beads and C. Elegans worms. Including a non-linear damage mechanism in the analysis, we find that the optimal power ratio converges to a 1:1 ratio with increasing order of the non-linear damage mechanism.

    关键词: shot noise limited detection,signal-to-noise ratio,Nonlinear Raman microscopy

    更新于2025-11-21 11:08:12

  • Plasmonic hole-transport-layer enabled self-powered hybrid perovskite photodetector using a modified perovskite deposition method in ambient air

    摘要: Herein, we report on an air-processed high performance self-powered hybrid perovskite (Pe) photodetector with plasmonic Silver nanoparticle (Ag NP) embedded hole-transport-layer (HTL), without the use of any electron-transporting layer (ETL). It is demonstrated that in the absence of ETL in the device, the Ag NPs embedded PEDOT:PSS HTL improves the photodetection performance significantly. We used a novel N2 gas assisted fast crystallization method for the deposition of perovskite film in ambient condition to form uniform Pe layer as compared to the nonuniform film obtained in conventional deposition method. The Pe film on Ag NPs embedded PEDOT:PSS layer shows enhanced optical absorption in the UV-visible region due to the plasmonic absorption by the Ag NPs. At zero bias, the ETL-free Ag NPs-Pe hybrid device shows ~45% enhanced responsivity and ~3 times faster photoresponse compared to the pristine device. The enhancements in the performance of hybrid photodetector are attributed to plasmon-enhanced optical absorption and hot electron generation, as well as improvement in charge extraction and transport by Ag NPs, which are corroborated by steady-state and time-resolved photoluminescence measurements. Impedance analysis of the devices shows the reduced carrier transfer resistance of the hybrid device, which results in superior transport of photo-generated charge carriers. Direct evidence for the increase in the work function by ~ 47 meV for Ag NPs doped PEDOT:PSS film is provided from the Kelvin probe force microscopy analysis. This increase in work function enables favorable band alignment with reduced energy barrier and a superior carrier transport resulting in improved photodetection performance for the hybrid device. Our results are significant for the development of high-performance, low-cost, ETL free plasmonic perovskite photodetectors for futuristic applications.

    关键词: Plasmonic perovskite photodetector,Kelvin probe force microscopy,Fast photoresponse,Self-biased photodetector

    更新于2025-11-21 11:01:37

  • Molten salt synthesis of highly ordered and nanostructured hexagonal boron nitride

    摘要: Hexagonal boron nitride (h-BN) is a well-known ceramic that has wide application areas ranging from electronics to metallurgy. However, highly ordered h-BN is conventionally synthesized at high temperatures above 1800 °C. In this work, we investigated the formation of BN from boric acid (H3BO3)-ammonium chloride (NH4Cl) mixture in the sodium chloride (NaCl)-potassium chloride (KCl) eutectic salt. We report the synthesis of highly ordered and nanostructured h-BN at 1000 °C using molten salt synthesis. The effect of starting composition, synthesis temperature, and dwell time on BN formation and its structural ordering were systematically investigated. It is concluded that the molten salt plays important roles in the formation of BN and its structural ordering, which is achieved by i) decomposing the boron (B)-nitrogen (N) bearing reactants that lead to the formation of BN layers, and ii) increasing the mobility of BN layers formed. Furthermore, we propose a possible reaction mechanism that governs the BN formation from the reactant mixture in molten salts and explain the observations based on thermodynamic and kinetic considerations.

    关键词: Molten salt synthesis,NaCl-KCl eutectic salt,Boron nitride,Structural ordering,High-resolution transmission electron microscopy

    更新于2025-11-21 11:01:37