- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Systematic Truncating Aptamers to Create High Performance Graphene Oxide (GO)-based Aptasensors for Multiplex Detection of Mycotoxins
摘要: Graphene Oxide (GO)-based aptasensor is currently one of the most popular sensing platforms for simple and rapid detection of various targets. Unfortunately, the GO-based aptasensors with long aptamer strands typically show unsatisfactory performance resulted from insignificant structural transformations upon target bindings. We report herein the utilization of an aptamer truncating strategy to combat such a challenge. Taking a pre-selected anti-aflatoxin B1 (AFB1) aptamer (P-AFB1-50) as a trial system, we sequentially remove the extraneous nucleotides within the aptamer by means of circular dichroism (CD) spectroscopy and binding affinity analysis. Particularly, the ratio of the quenching constants between the GO sheets and the truncated aptamers (labelled with fluorophores) in the absence and presence of target was determined for each of the truncated aptamers to evaluate the optimal sequence. As a result, the truncated aptamer comprising 40 nucleotides was confirmed to show the highest FL output and best detection limit upon conjugation with GO sheets. More importantly, we demonstrated that this truncating strategy is versatile, i.e., it can be easily extended to other aptamer systems (anti-ochratoxin A (OTA) aptamer, P-OTA-61, as an example) for extraneous nucleotide identification. Impressively, the two optimal truncated aptamers can work together on GO sheets to achieve a simultaneous detection of two different mycotoxins (i.e., AFB1 and OTA) in one single testing. Essentially, this research opens a new avenue for the design and testing of aptamer/GO based-sensing platforms for rapid, low-cost and multiplex quantification of analytical targets of interest.
关键词: DNA/GO-based biosensors,AFB1,OTA,long-chain aptamer,multiplex detection,extraneous nucleotide truncation
更新于2025-11-14 15:28:36
-
Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP)
摘要: Ultrathin (<10 nm) nanosheets of a metal-organic framework (MOF-NSs) were prepared in high-yield and scalable production by a surfactant-assisted one-step method. The MOF-NSs possess distinguished affinity for ssDNA but not for dsDNA. This causes the fluorescence of the labeled DNA to be quenched. On binding to the target DNA (shown here for Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus), the labeled duplex is released and the fluorescence of the label is restored. The labels Texas Red, Cy3 and FAM were used and give red, red or green fluorescence depending on the kind of pathogen. The detection limits are 28 pM, 35 pM and 15 pM for the gene segments of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus, respectively.
关键词: FRET,Surfactant-assisted synthesis,Two dimensional nanomaterials,Pathogens,Fluorescence sensor,Multiplex detection
更新于2025-09-23 15:22:29
-
Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens
摘要: In this study, we report the simultaneous use of gold and silver nanoparticles to set a multicolor multiplex lateral flow immunoassay (xLFIA). Silver nanoparticles (AgNPs), spherical in shape and characterized by a brilliant yellow color, were obtained by a new viable one-step synthetic protocol. AgNPs were stable over time and acceptably robust to conditions used for fabricating LFIA devices. These AgNPs were employed as a colorimetric probe in combination with two different kinds of gold nanoparticles (AuNPs) to set a visual xLFIA for detecting allergens. Surface plasmon resonance peaks of probes (AgNPs, spherical and desert rose-like AuNPs) were centered at 420, 525, and 620 nm, respectively. Therefore, the xLFIA output was easily interpreted through a Byellow magenta cyan (YMC)^ color code. The prospect of the YMC xLFIA was demonstrated by simultaneously detecting three major allergens in bakery products. Antibodies directed towards casein, ovalbumin, and hazelnut allergenic proteins were individually adsorbed onto metal nanoparticles to produce three differently colored specific probes. These were inserted in a LFIA comprising three lines, each responsive for one allergen. The trichromatic xLFIA was able to detect allergenic proteins at levels as low as 0.1 mg/l and enabled the easy identification of the allergens in commercial biscuits based on the color of the probes.
关键词: Multiplex detection,Hazelnut,Ovalbumin,Colorimetry,Immunochromatographic strip test,Casein
更新于2025-09-23 15:21:01
-
Direct and Label-Free Detection of MicroRNA Cancer Biomarkers Using SERS-Based Plasmonic Coupling Interference (PCI) Nanoprobes
摘要: MicroRNAs (miRNAs), small non-coding endogenous RNA molecules, are emerging as promising biomarkers for early detection of various diseases and cancers. Practical screening tools and strategies to detect these small molecules are urgently needed in order to facilitate the translation of miRNA biomarkers into clinical practice. In this study, a label-free biosensing technique based on surface-enhanced Raman scattering (SERS), referred to as “plasmonic coupling interference (PCI)”, was applied for the multiplex detection of miRNA biomarkers. The sensing mechanism of the PCI technique relies on the formation of a nanonetwork consisting of nanoparticles with Raman labels located between adjacent nanoparticles that are interconnected by DNA duplexes. Due to the plasmonic coupling effect of adjacent nanoparticles in the nanonetwork, the Raman labels exhibit intense SERS signals. Such effect can be modulated by the addition of miRNA targets of interest that act as inhibitors to interfere with the formation of this nanonetwork, resulting in a diminished SERS signal. In this study, the PCI technique is theoretically analyzed and the multiplex capability for detection of multiple miRNA cancer biomarkers is demonstrated, establishing the great potential of PCI nanoprobes as a useful diagnostic tool for medical applications.
关键词: SERS,PCI,miRNAs,cancer biomarkers,MicroRNAs,plasmonic coupling interference,multiplex detection
更新于2025-09-12 10:27:22
-
Plasmonic droplet screen for single-cell secretion analysis
摘要: Single-cell secretion analysis technologies are needed to elucidate the heterogeneity of cellular functionalities. Although ligand binding assays in microwells provide a promising approach for measuring single-cell secretions, their throughput is limited. Recently, droplet assays have been developed for high-throughput single-cell screening. However, because washing steps are difficult to perform with droplets, there are still challenges in measuring secretions using droplet assays. In this study, a plasmonic droplet screen approach is developed for one-step washing-free multiplex detection of single-cell secretions. Individual cells are encapsulated with antibody-conjugated gold nanorods (AuNRs) in droplets to evaluate their secretion levels. The shift in the plasmon resonance peak reflects the amount of secreted protein without needing additional indicator and washing steps. The plasmonic signals from a continuous flow of single-cell droplets are collected by dark-field spectroscopy (~100–150 cells min?1). This platform is tested by screening interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) secreted from suspended leukemia cells and adherent breast cancer cells. Overall, this novel strategy shows the potential and flexibility of high-efficiency multiplex single-cell secretion analysis.
关键词: Multiplex detection,Platform engineering,Immunoassay,Surface plasmon resonance,Single cell analysis
更新于2025-09-11 14:15:04