- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[ACM Press the 3rd International Conference - Tetouan, Morocco (2018.10.10-2018.10.11)] Proceedings of the 3rd International Conference on Smart City Applications - SCA '18 - Study of a new design of a solar adsorption sensor for a refrigeration system
摘要: Morocco's climate encompasses a wide range of weather conditions over a broad geographic scale that can improve the performance of the solar adsorption refrigeration system. Solar energy technologies have attracted worldwide attention because of their non-polluting nature. Also, Solar refrigeration based on adsorption cycles is simple, silent and adaptable to small, medium or large systems. Application potentials include storage of vaccines for immunization against deadly diseases, conservation of food products for future use and ice making. This paper illustrates a new design to improve the performance of the solar adsorption machine to achieve a good thermal efficiency with an emission of approximately zero CO2. The mechanism of this design is based on dual phases: desorption and adsorption. The new solar collector will have to convert solar energy into heat and provide the effective temperature for a longer period of time than that obtained by a plan solar collector.
关键词: Performance,Design,Adsorption
更新于2025-09-23 15:23:52
-
Alkali-metal-adsorbed g-GaN monolayer: ultralow work functions and optical properties
摘要: The electronic and optical properties of alkali-metal-adsorbed graphene-like gallium nitride (g-GaN) have been investigated using density functional theory. The results denote that alkali-metal-adsorbed g-GaN systems are stable compounds, with the most stable adsorption site being the center of the hexagonal ring. In addition, because of charge transfer from the alkali-metal atom to the host, the g-GaN layer shows clear n-type doping behavior. The adsorption of alkali metal atoms on g-GaN occurs via chemisorption. More importantly, the work function of g-GaN is substantially reduced following the adsorption of alkali-metal atoms. Specifically, the Cs-adsorbed g-GaN system shows an ultralow work function of 0.84 eV, which has great potential application in field-emission devices. In addition, the alkali-metal adsorption can lead to an increase in the static dielectric constant and extend the absorption spectrum of g-GaN.
关键词: Density functional theory,Optical properties,Field emission device,Adsorption,Work function,G-GaN
更新于2025-09-23 15:23:52
-
Solar Heterogeneous Photocatalytic Oxidation for Water and Wastewater Treatment: Problems and Challenges
摘要: Solar operation of heterogeneous photocatalytic oxidation reactors is looked at as a sustainable process for water and wastewater treatment, because it does not consume electric power and chemicals. However, there are still problems for technical-scale application. The problems addressed in this article are large area demand, water evaporation from open reactors and lack of simple photocatalyst recovery. An optimum solar reactor type is the parabolic compound collector reactor with borosilicate glass tubes. Challenges for further research are improvement in mass transfer as well as identification of novel photocatalysts which make use also of visible light, are efficient and stable, and are easy to be produced in an economically feasible way. Also the combination of photocatalysts with adsorbents is promising. Although membrane filtration processes have been successfully combined with solar photocatalytic oxidation and represent a safe barrier against spreading photocatalyst nanoparticles into the aquatic environment, more simple and less energy-consuming methods for photocatalyst recovery would be desirable.
关键词: Photocatalyst recovery,Novel photocatalysts,Solar photocatalytic oxidation,Photocatalysis adsorption hybrid process,Mass transfer
更新于2025-09-23 15:23:52
-
Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation
摘要: Porous structures offer an enormous surface suitable for gas sensing, however, the effects of their quantum quasi-confinement on their molecular sensing capacities has been seldom studied. In this work the gas-sensing capability of silicon nanopores is investigated by comparing it to silicon nanowires using first principles calculations. In particular, the adsorption of toxic gas molecules CO, NO, SO2 and NO2 on both silicon nanopores and nanowires with the same cross sections was studied. Results show that sensing-related properties of silicon nanopores and nanowires are very similar, suggesting that surface effects are predominant over the confinement. However, there are certain cases where there are remarked differences between the nanowire and porous cases, for instance, CO-adsorbed nanoporous silicon shows a metallic band structure unlike its nanowire counterpart, which remains semiconducting, suggesting that quantum quasi-confinement may be playing an important role in this behaviour. These results are significant in the study of the quantum phenomena behind the adsorption of gas molecules on nanostructure’s surfaces, with possible applications in chemical detectors or catalysts.
关键词: Sensing,Chemical sensors,Silicon nanowires,Density functional theory,Molecule adsorption,Porous silicon
更新于2025-09-23 15:23:52
-
CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension
摘要: Mixed oxide interfaces are critical in the delivery of active components in photocatalytic processes. Cerium doped TiO2 photocatalysts were prepared using a hydrothermal route to manipulate the morphology of the photocatalyst and improve the interaction between CeO2 and TiO2 nanoparticles. These changes were compared with the photocatalytic activity and adsorption capacity of the solids. The photocatalysts were used to degrade polyvinylpyrrolidone (PVP) and methylene blue (MB) as test compounds. A low photodegradation rate of PVP (0.0001 min?1 and 0.0005 min?1 under visible and UV light, respectively) was observed using Ce-doped photocatalysts, with no adsorption. The high adsorption capacity of MB (34.46 mg g?1) proved that the local morphology of the nanostructured CeO2/TiO2 photocatalysts is more important than the amount of CeO2 in the sample, and the main role of the CeO2 on mixed photocatalysts is to improve thermal stability during the synthesis. XRD, XPS, BET surface area, UV–vis and TEM techniques confirmed this conclusion. The rate of degradation of MB by the Ce-doped photocatalyst decreased dramatically when using the singlet oxygen scavenger L-Histidine (0.0214 min?1 to 0.0001 min?1), indicating a photocatalysis sensitized by the dye, under visible and UV light.
关键词: Cerium,Photosensitization,Reactive oxygen species,Adsorption,Morphology
更新于2025-09-23 15:23:52
-
Hydrogen reduction characteristics of WO3 based on density functional theory
摘要: The ?rst principle theory in DFT (Density Function Theory) was applied to study the hydrogen adsorption on O-terminated and WO-terminated surface of WO3 (0 0 1). The exploration of the two terminated surfaces structure and hydrogen adsorption characteristics was conducted from the micro-structure point of view. The result indicates that energy of O-terminated surface with enriched oxygen is higher than the WO-terminated surface with less oxygen. The chemical adsorption occurs when the distance between hydrogen molecules and surface atom ranged from 0.6 ? to 0.8 ?, while the physical adsorption occurs when the distance was bigger than 0.8 ?. The energy of hydrogen adsorption on O-terminated surface is lower than energy of hydrogen adsorption on WO-terminated surface, the chemical adsorption of hydrogen is easier to happen compare to physical adsorption. The energy of hydrogen adsorption on O1c on O-terminated surface is lower than energy of hydrogen adsorption on O2c on the same surface. The adsorption of hydrogen not only changes the structure of surfaces of WO3 and cause the conducting electrons jumping into valence band and energy declining but also make a part of electrons in orbit 2p of O to jump into orbit 5p of W.
关键词: Hydrogen adsorption,First principle,Density of states,Reduction,WO3
更新于2025-09-23 15:23:52
-
Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms
摘要: This study investigated the adsorption and photocatalytic activity of TiO2-boron nitride (BN) nanocomposites for the removal of contaminants of emerging concern in water using ibuprofen as a model compound. TiO2 nanofibers wrapped by BN nanosheets were synthesized by electrospinning method. Characterization of the nanocomposite photocatalysts indicated the BN nanosheets improved the light absorbance and reduced the recombination of the photoexcited charge carriers (e- and h+). The photocatalytic oxidation products and mechanisms of ibuprofen by the TiO2-BN catalysts were elucidated using a multiple analysis approach by high performance liquid chromatography, ultraviolet absorbance, dissolved organic carbon, fluorescence excitation-emission matrices, and electrospray ionization–liquid chromatography–tandem mass spectrometry. The experimental results revealed that the photocatalytic oxidation by the TiO2-BN nanocomposites is a multi-step process and the interactions between ibuprofen molecules and the TiO2-BN nanocomposites govern the adsorption process. The increasing BN nanosheet content in the TiO2 nanofibers facilitated the breakdown of ibuprofen degradation intermediates (hydroxyibuprofen, carboxyibuprofen, and oxypropyl ibuprofen). Kinetic modeling indicated both adsorption and photocatalytic oxidation of ibuprofen by the TiO2-BN nanocomposites followed the first-order kinetic model. The photocatalytic oxidation rate increased with the increasing BN content in the nanocomposite catalysts, which was attributed to the enhanced light absorption capacity and the separation efficiency of the photoexcited electron (e-)-hole (h+) pairs. Multiple photocatalytic cycles were conducted to investigate the reusability and regeneration of the nanofibers for ibuprofen degradation.
关键词: adsorption,titanium dioxide boron-nitride nanocomposites,photocatalytic degradation mechanisms,degradation intermediates,photocatalytic oxidation
更新于2025-09-23 15:23:52
-
Effect of atom adsorption on the electronic, magnetic, and optical properties of the GeP monolayer: A first-principle study
摘要: First-principles calculations have been carried out to explore the effect of atom surface adsorption on the electronic, magnetic, and optical properties of the germanium phosphide (GeP) monolayer. It is shown that the GeP monolayer exhibits good adsorption capability to all the selected adatoms and can preserve the structural integrity upon the adsorption of most adatoms. The adatoms can bring out diverse electronic properties to the GeP monolayer. The H, Li, Na, K, and Al adatoms donate electrons to the GeP monolayer and result in its metallization. The other adatoms do not change the semiconducting nature of the GeP monolayer and will induce midgap states (Mg, Ca, Si, Ge, Ag, and Au) or reduce the bandgaps (Ni, Pd, and Pt). The B, N, P, As, V, Cr, Mn, Fe, and Co adatoms induce spin magnetic moments into the GeP monolayer. Especially, the spin magnetic moments are mainly located on the adatoms for the GeP decorated with the V, Cr, Mn, Fe, and Co atoms. As a result, the dilute magnetic semiconductor can be obtained. In addition, all the adatoms decrease the work function, except O. Thus, some effects on the optical properties are highly expected. The GeP monolayer exhibits a wide range of light absorption and the Mg, Si, Ge, Cu, Ag, Au, and Pt adatoms can further redshift the absorption edge of the GeP monolayer along the x and y directions. Our calculations provide an effective method to modulate the electronic, magnetic, and optical properties of the GeP monolayer for device applications.
关键词: and optical properties,GeP monolayer,magnetic,First-principles calculations,electronic,atom surface adsorption
更新于2025-09-23 15:23:52
-
Cesium lead halide perovskite nanocrystals for ultraviolet and blue light blocking
摘要: Direct exposure to ultraviolet (UV) light is closely related to various harmful effects [1-3], ranging from skin injures to cancer originated from DNA damage. Recent years, some studies reported that blue light are also detrimental to humans [4,5], for example, the blue light could cause photochemical lesions to human retinal within the intensity range of the natural light [6]. Furthermore, blue light is responsible for the solar retinitis and may play a role in age-related macular degeneration. Importantly, the harmful effects of blue lights generated from the electronic display devices should also be careful [7]. Thus, the development of new UV and blue light shielding materials has been received much attention [8]. In the past few years, there has been an increased awareness of the importance to develop UV shielding materials. A variety of materials have been used to prevent UV lesions. Organic molecules like avobenzone or oxybenzone have been used as a UV absorber for many years, but the self-degradation limits their usage time. Inorganic materials such as zinc oxide (ZnO) and titanium oxide (TiO2) have been used intensively for UV shielding [9-12]. However, photocatalytic properties and self-degradations of the ZnO and TiO2 based absorbers also hindered their applications [13,14]. Other materials, e.g., graphene oxide-poly(vinyl alcohol) composite film and lanthanide complex functionalized cellulose nanopaper were also reported for UV shielding [15,16]. Whereas, the excellent UV-filtering capability of these films was obtained by sacrificing the visible light transmittance. Therefore, fabricating UV and blue light blocking materials with good photostability and high transparency to the rest of visible light still remains a challenge and is urgently needed to be developed. Recently, because of the outstanding performance in photovoltaic applications, lead halide perovskite APbX3 (where A = CH3NH3+, (NH2)2CH+ and Cs+, X = Cl?, Br? and I?) has become the most noticeable materials [17-22]. These perovskite nanocrystals exhibit intriguing features [23], such as easy tunable band gap, sharp optical absorption edges and high quantum efficiency with narrow emission spectra. These nanocrystals have been studied extensively for various optical applications, especially light emitting diodes and lasers [24-27]. Post modification of perovskite nanocrystals by anion exchange enables the absorbance band gap tuned from ultraviolet to near infrared spectra [28,29]. In addition, the perovskite nanocrystals show large absorption range, which offers the great potential for UV and blue light shielding applications. Although the tunable absorption-band edge of perovskite nanocrystals has already been realized, there have not been reports on developing UV and blue light blocking material with tunable absorption-band edge. Herein, we aim to the development of a simple and easy way to fabricate UV and blue light blocking material by mixing pervoskite nanocrystals and ethyl cellulose (EC). In this study, EC was used as a host material for the CsPb(Cl/Br)3 pervoskite nanocrystals. By tuning the ratio of Br to Cl, the blocked wavelength range could be easily controlled. Using the sharp absorption edges, the material possesses excellent light blocking ability in the range of 200-460 nm and maintains high transparency (95%) to visible light in the range beyond blue light.
关键词: UV blocking,Cesium lead halide nanocrystals,Blue light blocking,Tunable adsorption edge,Perovskite nanocrystals
更新于2025-09-23 15:23:52
-
Effect of solvents on the self-assembly of long chain alkylphosphonic acids on indium tin oxide surface - In situ studies on the adsorption kinetics and electron transfer process
摘要: The spontaneous self-assembly process of phosphonic acids (PAs) onto indium tin oxide (ITO) surface has been studied in this work. We have carried out in situ adsorption kinetics studies of phosphonic acids in ethanol as a solvent using electrochemical impedance spectroscopy (EIS). Further, the effect of different solvents like ethanol, water, toluene and hexane on the structural integrity of the alkylphosphonic acid (CH3 (CH2)n PO3H2, n = 15,17) thin films on ITO surface has been investigated by using [Fe(CN)6]3-/4- as a redox probe. From the study of formation kinetics, it is concluded that molecular self-assembly process follows two adsorption steps, a fast first step followed by a slower second step. The results of cyclic voltammetric (CV) and impedance measurements show that phosphonic acids form a highly impermeable surface film on ITO when polar solvents like ethanol and water are used.
关键词: self assembly,Adsorption Kinetics,microelectrode array,Contact Angle,Capacitance,ITO,Phosphonic acid
更新于2025-09-23 15:23:52