- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process
摘要: Laser powder bed fusion (LPBF) is an advanced manufacturing technology that uses data-driven, layer-by-layer accumulation of materials to form metal components and has been widely applied in aerospace and other fields. Effectively controlling pore defects is a key scientific problem and technical difficulty in LPBF industrial production. Based on the open-source discrete element method code Yade, the particle distribution of the powder bed was obtained. Based on the open-source computational fluid dynamics code OpenFOAM, the pore evolution during the LPBF formation process at the mesoscopic scale was predicted. The thermal–force factors affecting the molten pool included the surface tension, Marangoni effect, gasification recoil force, and mushy drag force. The laser energy model used a body heat source based on interface tracking. First, dimensionless analysis of the molten pool evolution in the case of LPBF single-track formation was carried out. The molten pool evolution was mainly influenced by the gasification recoil force, Marangoni effect and surface tension, and the main influencing factors on different zones of the molten pool were different. To examine the influences of the laser power, scanning speed, powder bed thickness, and hatch space on the pore defect in the LPBF formation process, simulations were carried out and compared with experimental results. When the volumetric energy density was too small, pore defects occurred due to insufficient fusion of metal particles, and when the volumetric energy density was too large to cause the “keyhole” effect, pore defects occurred because the entrained gas could not escape in time. This paper is expected to provide theoretical guidance for the scientific regulation of pore defects in LPBF production.
关键词: OpenFOAM,Volumetric energy density,Dimensionless analysis,Pore defect,Laser powder bed fusion,Numerical simulation
更新于2025-09-19 17:13:59
-
Numerical modeling and Schlieren visualization of the gas-assisted laser cutting under various operating stagnation pressures
摘要: The uniformity of the exit jet pattern in high pressure gas-assisted laser cutting represents the main feature in order to achieve high cutting quality and capability. Therefore, the effect of both inlet stagnation pressure and nozzle geometry on the behavior of the exit jet has been investigated in this research. Quasi 1-D gas dynamics theory has been used to calculate the exact-design operating conditions for three different supersonic nozzles that were fabricated by means of Wire Electrical Discharge Machining. The jet flow through these nozzles has been numerically modeled and experimentally checked, using Schlieren visualization, under exact-design, over-expansion and under-expansion operating conditions coming to a good numerical-experimental agreement in terms of flow structure. As main result, the exit jet was found to preserve its uniform distribution with parallel boundaries and low divergence under the exact-design operating condition, differently to what observed for the others two conditions, especially for nozzle with small divergence angle.
关键词: Schlieren visualization,Over-expansion,Under-expansion,Cut kerf,OpenFOAM,Supersonic nozzles,Gas-assisted laser cutting
更新于2025-09-16 10:30:52
-
Laser-induced forward transfer of soft material nanolayers with millisecond pulses shows contact-based material deposition
摘要: In this work, we present a qualitative and quantitative experimental analysis, as well as a numerical model, of a novel variant of the laser-induced forward transfer, which uses millisecond laser pulses. In this process, soft material nanolayer spots are transferred from a donor slide, which is coated with the soft material layer, to an acceptor slide via laser irradiation. This method offers a highly flexible material transfer to perform high-throughput combinatorial chemistry for the generation of biomolecule arrays. For the first time, we show visual evidence that the main transfer mechanism is contact-based, due to thermal surface expansion of the donor layer. Thus, the process is different from the many known variants of laser-induced forward transfer. We will characterize the maximum axial surface expansion in relation to laser power and pulse duration. On this basis, we derive a numerical model that approximates the axial surface expansion within measurement tolerances. Finally, we analyze the topology of the transferred soft material nanolayer spots by fluorescence imaging and vertical scanning interferometry to determine width, height, and shape of the transferred material. Concluding from this experimental and numerical data, we can now predict the amount of transferred material in this process.
关键词: high-speed imaging,fluorescence imaging,experimental and numerical prediction,vertical scanning interferometry,OpenFOAM
更新于2025-09-12 10:27:22