- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem
摘要: In vivo noninvasively manipulating biological functions by the mediation of biosafe near infrared (NIR) light is becoming increasingly popular. For these applications, upconversion rare-earth nanomaterial holds great promise as a novel photonic element, and has been widely adopted in optogenetics. In this article, an upconversion optogenetic nanosystem that was promised to achieve autophagy up-regulation with spatiotemporal precision was designed. The biocompatible system worked via two separated parts: blue light-receptor optogenetics-autophagy upregulation plasmids for import; and upconversion rods-encapsulated flexible capsule for converting tissue-penetrative NIR light into local visible blue light. Results validated that this system could achieve up-regulation of autophagy in vitro (in both HeLa and 293T cell lines) and remotely penetrate tissue (~3.5mm) in vivo. Since autophagy serves at a central position in intracellular signalling pathways, which is correlative with diverse pathologies, we expect that this method could establish an upconversion material-based autophagy up-regulation strategy for fundamental and clinical applications.
关键词: optogenetics,autophagy,upconversion materials,protein-protein interaction (PPI),near-infrared (NIR) light
更新于2025-09-19 17:15:36
-
Er:YAG Laser and Cyclosporin A Effect on Cell Cycle Regulation of Human Gingival Fibroblast Cells
摘要: Introduction: Periodontitis is a set of inflammatory disorders characterized by periodontal attachment loss and alveolar bone resorption. Because of deficiency in periodontitis mechanical therapy, this study was aimed to explore the molecular influence of the erbium-doped: yttrium aluminum garnet (Er:YAG) laser and cyclosporin A (CsA) on human gingival fibroblasts (HGFs) for improvement in periodontal diseases therapy. Methods: We focused on articles that studied the proteome profiles of HGFs after treatment with laser irradiation and application of CsA. The topological features of differentially expressed proteins were analyzed using Cytoscape Version 3.4.0 followed by module selection from the protein-protein interaction (PPI) network using Cluster ONE plugin. In addition, we performed gene ontology (GO) enrichment analysis for the densely connected region and key proteins in both PPI networks. Results: Analysis of PPI network of Er:YAG laser irradiation on HGFs lead to introducing YWHAZ, VCP, HNRNPU, YWHAE, UBA52, CLTC, FUS and IGHG1 as key proteins while similar analysis revealed that ACAT1, CTSD, ALDOA, ANXA2, PRDX1, LGALS3, ARHGDI and EEF1A1 are the crucial proteins related to the effect of drug. GO enrichment analysis of hub-bottleneck proteins of the 2 networks showed the different significant biological processes and cellular components. The functional enrichments of module of Er:YAG laser network are included as fatty acid transmembrane transport, cytokinesis, regulation of RNA splicing and asymmetric protein localization. There are not any significant clusters in network of HGF treated by CsA. Conclusion: The results indicate that there are 2 separate biomarker panels for the 2 treatment methods.
关键词: cyclosporin A (CsA),human fibroblast cell,Er:YAG laser,Protein-protein interaction (PPI) network analysis,Gene ontology
更新于2025-09-11 14:15:04
-
A ratiometric fluorescent and colorimetric dual-signal sensing platform based on N-doped carbon dots for selective and sensitive detection of copper(II) and pyrophosphate ion
摘要: A simple ratiometric fluorescent and colorimetric dual-signal sensing system for Cu2+ and pyrophosphate ion (PPi) detection is established based on N-doped carbon dots (N-CDs) which are synthesized via one-step hydrothermal approach. In the strategy, 2,3-diaminophenazine (oxOPD), the oxidation product of o-phenylenediamine (OPD), can be adsorbed on the surface of N-CDs through electrostatic interaction, which efficiently quenches the fluorescence of N-CDs, meanwhile, oxOPD provides a new emission peak at 553 nm. In virtue of the selective oxidative and chromogenic reaction of OPD with Cu2+, a dual-readout sensing system for Cu2+ is achieved. In addition, the redox and chromogenic reaction among them can be inhibited by PPi, which protects effectively the fluorescence of N-CDs from quenching. This sensing system exhibits good selectivity and sensitivity toward Cu2+ and PPi over other analytes with a low detection limit of 23 nM and 0.7 μM, respectively. Furthermore, the proposed sensing system displays a prospective application for quantitative assay of Cu2+ and PPi in practical samples.
关键词: N-doped carbon dots,ratiometric fluorescence,PPi,colorimetric detection,Cu2+
更新于2025-09-10 09:29:36
-
In situ formation of fluorescent polydopamine catalyzed by peroxidase-mimicking FeCo-LDH for pyrophosphate ion and pyrophosphatase activity detection
摘要: As pyrophosphate ion (PPi) and pyrophosphatase (PPase) play crucial roles in the pathological process of arthritis, determination of PPi and PPase in biological fluids turns to be of great importance for clinical diagnosis and therapy of arthritic diseases. In this work, we proposed a new fluorescent assay for PPi and PPase activity detection based on the competitive coordination chemistry of Fe3+ between PPi and an in situ formed fluorescent polydopamine (PDA). FeCo layered double hydroxide (FeCo-LDH) was explored as a peroxidase mimic to facilitate the in situ formation of fluorescent PDA from dopamine mediated by low-concentration H2O2 within 30 min; The formed fluorescent PDA could be significantly quenched by Fe3+ through forming a PDA-Fe3+ complex structure; When PPi existed, it coordinated Fe3+ competitively against PDA and inhibited the fluorescence quenching of PDA by Fe3+; When PPi was hydrolyzed under the catalysis of PPase, the Fe3+ ion could quench the fluorescence of the formed PDA again. With these principles, our fluorescent assay was able to detect PPi and PPase activity specifically, providing detection limits down to 54 mM and 0.13 U/L, respectively. Furthermore, accurate determination of PPi and PPase activity in spiked human serum was also demonstrated using the developed assay.
关键词: PPase,Fluorescent PDA,PPi,Nanozyme,FeCo-LDH
更新于2025-09-04 15:30:14