- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Functional chlorin gold nanorods enable to treat breast cancer by photothermal/photodynamic therapy
摘要: Background: The existing chemo/radiotherapy fail to eliminate cancer cells due to the restriction of either drug resistance or radio tolerance. The predicament urges researchers to continuously explore alternative strategy for achieving a potent curative effect. Methods: Functional chlorin gold nanorods (Ce6-AuNR@SiO2-d-CPP) were fabricated aiming at treating breast cancer by photothermal/photodynamic therapy (PTT/PDT). The nanostructure was developed by synthesizing Au nanorods as the photothermal conversion material, and by coating the pegylated mesoporous SiO2 as the shell for entrapping photosensitizer Ce6 and for linking the D-type cell penetrating peptide (d-CPP). The function of Ce6-AuNR@SiO2-d-CPP was verified on human breast cancer MCF-7 cells and MCF-7 cells xenografts in nude mice. Results: Under combinational treatment of PTT and PDT, Ce6-AuNR@SiO2-d-CPP demonstrated a strong cytotoxicity and apoptosis inducing effects in breast cancer cells in vitro, and a robust treatment efficacy in breast cancer-bearing nude mice. The uptake mechanism involved the energy-consuming caveolin-mediated endocytosis, and Ce6-AuNR@SiO2-d-CPP in PTT/PDT mode could induce apoptosis by multiple pathways in breast cancer cells. Conclusion: Ce6-AuNR@SiO2-d-CPP demonstrated a robust efficacy in the treatment of breast cancer by photothermal/photodynamic therapy. Therefore, the present study could offer a new promising strategy to treat the refractory breast cancer.
关键词: PTT/PDT,apoptosis,cellular uptake,functional chlorin gold nanorods,cell penetrating peptide,cytotoxicity
更新于2025-09-23 15:23:52
-
Self-Assembled Naphthalimide Conjugated Porphyrins Nanomaterials with D-A Structure for PDT/PTT Synergistic Therapy
摘要: Light-activated phototherapy, including photothermal and photodynamic therapy, has become a new way for spatiotemporal control and non-invasive treatment of cancer. In this study, two new organic porphyrin molecules (NI-Por and NI-ZnPor) with donor (D)-acceptor (A) structure were designed and synthesized. The donor-acceptor pairs facilitated the intermolecular electron transfer, resulting in the enhancement of near-infrared (NIR) absorbance and nonradiative heat generation. After self-assembling, the nanoparticles were formed with the size around 60 nm. Relative to that of organic molecules, the absorption of NI-Por NPs and NI-ZnPor NPs broadened and red-shifted to the near-infrared region. Moreover, the porphyrin-containing nanoparticles can generate heat and reactive oxygen species (ROS) simultaneously induced by a single laser (635 nm). The intracellular reactive oxygen species production of NI-Por NPs and NI-ZnPor NPs was confirmed using DCFH-DA as an indicator. Furthermore, the localization of NI-Por NP and NI-ZnPor NP in HeLa cells was verified by fluorescence confocal laser microscopy. The photocytoxicity of two nanoparticles against HeLa cells were evaluated through CCK-8 method. The IC50 of NI-Por NPs and NI-ZnPor NPs upon 635 nm laser irradiation was calculated to be 6.92 μg/mL and 5.86 μg/mL, respectively. Furthermore, the PDT/PTT synergistic effect of NPs under 635 nm laser was verified through different treatment groups in vitro. All these results demonstrated that the as-prepared porphyrin-based nanoparticles are promising nanoagents for PDT/PTT in clinic.
关键词: PTT,PDT,Self-assembly,Porphyrin,Nanoparticles
更新于2025-09-12 10:27:22