修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • [IEEE 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) - Coimbatore (2018.3.1-2018.3.3)] 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) - Implementation of Differential Power Processing to Optimize the Solar Power Generation

    摘要: The objective of this paper is to harvest the optimum power from solar panel using different MPPT techniques for low power application under non-uniform irradiance conditions. The overall power output of photovoltaic system is reduced due to partial shading. A new differential power converter along with INC control algorithm is introduced to reduce the partial shading effect and oscillations of output power.

    关键词: Differential power processing,Maximum Power Point Tracking (MPPT) techniques,Photo-Voltaic (PV) array,Maximum Power Point (MPP),Partial Shading Condition (PSC)

    更新于2025-09-23 15:22:29

  • Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition

    摘要: This paper proposes a novel bio-inspired optimization method named memetic salp swarm algorithm (MSSA). It is developed by extending the original salp swarm algorithm (SSA) with multiple independent salp chains, thus it can implement a wider exploration and a deeper exploitation under the memetic computing framework. In order to enhance the convergence stability, a virtual population based regroup operation is used for the global coordination between different salp chains. Due to partial shading condition (PSC) and fast time-varying weather conditions, photovoltaic (PV) systems may not be able to generate the global maximum power. Hence, MSSA is applied for an effective and efficient maximum power point tracking (MPPT) of PV systems under PSC. To evaluate the MPPT performance of the proposed algorithm, four case studies are undertaken using Matlab/Simulink, e.g., start-up test, step change of solar irradiation, ramp change of solar irradiation and temperature, and field atmospheric data of Hong Kong. The obtained PV system responses are compared to that of eight existing MPPT algorithms, such as incremental conductance (INC), genetic algorithm (GA), particle swarm optimization (PSO), artificial bees colony (ABC), cuckoo search algorithm (CSA), grey wolf optimizer (GWO), SSA, and teaching-learning-based optimization (TLBO), respectively. Simulation results demonstrate that the output energy generated by MSSA in Spring in HongKong is 118.57%, 100.73%, 100.96%, 100.87%, 101.35%, 100.36%, 100.81%, and 100.22% to that of INC, GA, PSO, ABC, CSA, GWO, SSA, and TLBO, respectively. Lastly, a hardware-in-the-loop (HIL) experiment using dSpace platform is undertaken to further validate the implementation feasibility of MSSA.

    关键词: Solar energy harvesting,virtual population,MPPT,memetic salp swarm algorithm,partial shading condition

    更新于2025-09-23 15:22:29

  • Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC

    摘要: Maximum power point tracker (MPPT) techniques have been used to extract the maximum power available form photovoltaic (PV) energy systems. Conventional MPPT techniques like perturb and observe (P&O), hill climbing (HC), incremental conductance etc. were good enough to track the maximum power for the unshaded PV systems because it has only one power peak in the P-V curve. In the case of partial shading conditions (PSC), many peaks are created; one global maximum power point (GMPP) and many local maximum power points (LMPPs). Most of conventional MPPT techniques may stick to one of the LMPPs, which reduce the MPPT efficiency of PV systems. Soft computing techniques like particle swarm optimization (PSO), gray wolf optimization (GWO), and Cuckoo search optimization (CSO) etc. can catch the GMPP of PV system under the same PSC. These latter techniques suffer from two problems, the first problem is the high oscillations around the GMPP, the second problem is that, they cannot follow the new GMPP once it changed its position due to the searching agents will be busy around old GMPP caught. The solution of these two problems are the motivation of this research. GWO has been used to catch the GMPP and the problem of oscillations around the GMPP has been solved by hybridizing this technique with fuzzy logic controller (FLC) for soft tune the output generated power at the GMPP. The FLC characterizes by accurate GMPP catching with almost zero oscillations. The second problem is solved in this paper by re-initializing the GWO with two new initialization techniques. The results obtained from GWO-FLC with two different re-initialization techniques have been compared to the results of PSO without reinitializing its particles. The results obtained from this work prove the superior performance of the new proposed technique in terms of dynamic GMPP catching and MPPT power efficiency in case of time variant PSCs.

    关键词: Global maximum power point,Fuzzy logic controller,MPPT energy efficiency,Partial shading condition,Particle swarm optimization,Grey wolf optimization

    更新于2025-09-23 15:21:01

  • A High Performance Shade-Tolerant MPPT Based on Current-Mode Control

    摘要: This paper proposes a high performance shade-tolerant maximum power point tracking (STMPPT) technique for DC-DC converter stage of photovoltaic (PV) applications. The average current-mode control (ACMC) is utilized to regulate the PV array current using two feedback control loops. The current-mode control is a superior scheme in control of DC-DC power electronic converters. The proposed STMPPT technique operates in two modes. The ACMC with the perturb and observe (P&O) MPPT algorithm functions in a local MPPT (LMPPT) mode under normal irradiance condition. When the PV array is likely to be partially shaded, a global MPPT (GMPPT) subroutine effectively scans the PV profile to optimize the PV system operation. This is achieved by implementing simple innovations to the ACMC-based P&O algorithm. The innovations benefit from useful observations of I-V characteristics. The idea behind using the I-V characteristics is to significantly reduce the search space, make the algorithm independent of shading conditions and PV array configuration, and inherently recognize the occurrence of partial shading conditions (PSCs). The proposed STMPPT technique enables very fast and reliable tracking of global maximum power point (GMPP). In addition, it can stably work under dynamic environmental change without losing correct sense of tracking direction. Its simplicity and independency would offer a viable solution for PV converter products. Simulation and experimental performance assessments are presented under different operating conditions that could happen in outdoor PV installations.

    关键词: perturb and observe algorithm,partial shading condition,Photovoltaic system,current-mode control,shade-tolerant maximum power point tracking

    更新于2025-09-19 17:15:36

  • A state-of-the-art review on conventional, soft computing, and hybrid techniques for shading mitigation in photovoltaic applications

    摘要: This article intends to present a compendious review to extract maximum power in solar photovoltaic (PV) systems under varying environmental conditions and partial shading conditions by enumerating various circuit-based topologies and different state-of-the-art maximum power point techniques (MPPT). Partial shading reduces the overall efficiency of the PV system; therefore techniques that are dealing with partial shading play an important part in the power conditioning unit of all PV system connected to the stand-alone mode or grid mode. Various circuit-based topologies and various algorithms have been broadly discussed till date. As every algorithm is associated with its own merits and demerit, hence an extensive literature survey is required while planning for PV generating station under normal and partial shading condition. In this article, a comprehensive review of shading mitigation using different topologies has been done. The article on shading mitigation is broadly divided into two major groups. The first group includes all major circuit-based topologies and the second group includes MPPT based techniques, which has been further classified into modified conventional techniques, soft computing techniques, and hybrid techniques. This comprehensive review presents an assessment of all techniques according to parameters like converter used, tracking speed, complexity, efficiency, number of sensors under partial shading condition would certainly provide a single platform to carry forward their research in solar PV application.

    关键词: global maximum power point,pulse width modulation,partial shading condition,photovoltaic generation System,hybrid optimization techniques,artificial intelligence

    更新于2025-09-19 17:13:59

  • Hybrid global maximum power point tracking algorithm under partial shading condition

    摘要: This paper presents a hybrid global maximum power point tracking (MPPT) algorithm under partial shading conditions, which consists of five methods, including the global scanning method, the filtering method, the binary searching method, the three-point method, and the anti-restarting method. By making full use of the advantages of these methods, the proposed algorithm is able to improve tracking speed and efficiency, decrease oscillation, and avoid restarting. Among which, the global scanning method is used to find all the local intervals, the filtering method is used to reduce the search area, the binary searching method is used to reduce the search time, the three-point method is used to track the global maximum power point dynamically, and the anti-restarting method is used to prevent restarting the algorithm. To verify the proposed algorithm, experiments have been carried out in a standard environment, dynamic solar irradiation, and dynamic temperature, respectively. The performance of the proposed algorithm is verified by comparing it with a perturb and observe (P&O) based global scanning MPPT method and a modified P&O with checking MPPT method using computer simulations.

    关键词: MPPT,global maximum power point tracking,photovoltaic systems,partial shading condition,hybrid algorithm,solar energy

    更新于2025-09-04 15:30:14