修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Theoretical Study on the Use Cyano Acid Derivation as Electron Acceptors in Pelargonidin as Dye Compounds of Sensitized Solar Cells (DSSC)

    摘要: The theoretical study of the use of cyano acid derivatives as electron acceptor groups in pelargonidin as a dye compound in sensitized solar cells (DSSC) was successfully carried out. Theoretical study was carried out with the purpose to determine the effect the addition of cyanoacrylic benzothiadiazole, cyanoacrylate, modification of cyanovinyl, and cyanocynamic as electron acceptors to the characteristics of pelargonidin as dye DSSC. The effect of modification is based on the parameters of bond length, spectra, molecular electron density, light harvesting efficiency (LHE), (VRP), and HOMO-LUMO energy. The molecular structure created using the Avogadro program, then optimized by DFT/TDDFT method using a base set 6.311G *. Based on the results of research on pelargonidin-benzothiadiazole cyanoacrylate is a better modification when compared with pelargonidin without modification or pelargonidin modified with other cyano acids. This modification is better modification based on parameters molecular electron density, HOMO-LUMO energy, (VRP), bond lengths, and spectra. Pelargonidin-benzothiadiazole cyanoacrylic electron density in LUMO conditions centred in benzothiadiazole cyanoacrylic, HOMO and LUMO energy of dye is -4.97856 eV & -2,56731 eV, VRP value 0.439, bond lengths 1.936 A, and spectra at wavelength 393-14 nm & 377-09 nm. Based on the light harvesting efficiency (LHE), pelargonidin without modification is the best modification with an LHE value 0.820.

    关键词: Spectra,DFT,Pelargonidin,TDDFT,DSSC,VRP,Bond Length,Electron Acceptor,HOMO-LUMO,LHE

    更新于2025-09-16 10:30:52

  • AN EXPLORATION INTO THE QUANTUM CONFINEMENT OF CTS/NATURAL DYE CORE- SHELL QUANTUM DOTS

    摘要: In this work, we have presented a simple way of changing the confinement energies of Copper Tin Sulphide (CTS) quantum dots using natural dyes as shell material. Tetragonal CTS quantum dots in the size range of 1.7nm- 2.2nm, of bandgaps of 2.48eV and 5.0 eV were prepared by means of a green colloidal synthesis technique. These quantum dots were treated with natural dyes such as onion and beetroot skin dyes. Pelargonidin and Betanin (pigments of onion and beetroot skin dye respectively) formed hydrogen bonding with the capping agent, thus forming a shell around the CTS quantum dots. The change in confinement due to the effect of dye as shell was studied from absorption, photoluminescence and infrared spectroscopic techniques. The transitions occurring were analysed using a theoretical approach. CTS quantum dots, with its high transmittance in a wide range of wavelengths find promising applications in the buffer layer of solar cells.

    关键词: Betanin,Copper tin sulphide,quantum dots,Pelargonidin,colloidal synthesis,quantum confinement

    更新于2025-09-12 10:27:22