修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Photoelectrochemical performances of Fe2O3 nanotube films decorated with cadmium sulfide nanoparticles via photo deposition method

    摘要: Hematite is an appropriate compound for photoelectrochemical water splitting. However, passive surface state, high recombination rate of the photo induced electron-hole pairs and poor and slow charge transfer kinetics restrict the performance of hematite. In this work, CdS/Fe2O3NTs samples have been successfully prepared by coating of CdS nanoparticles on the surface of the self-organized Fe2O3NTs via photo deposition technique in order to enhance charge separation and charge transfer kinetics. FESEM (Field Emission Scanning Electron Microscopy), XRD (X-ray diffraction), DRS (Diffraction Reflection Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy) analyses have been used to characterize the CdS/Fe2O3NTs photoelectrodes obtained. CdS/Fe2O3NTs has an intense visible light absorption and displays a red-shift of the band edge in comparison with the bare Fe2O3NTs, according to DRS test. The photocurrent density of Fe2O3NTs increased approximately 5 times upon coating with CdS, as shown by photoelectrochemical measurements, indicating the significant role of the introduction of CdS in the enhancement of photo catalytic activity. CdS/Fe2O3NTs may be promising and effective photoanodes in PEC water splitting given their simple preparation and good performance.

    关键词: Cadmium sulfide,Photo deposition,Fe2O3 nanotube,Photoelectrochemical water splitting

    更新于2025-09-23 15:21:01

  • Sono-photodeposition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: Type-II plasmonic nano-heterojunction with simulated sunlight-driven elimination of drug

    摘要: The mesoporous Ag/Bi2Sn2O7-C3N4 plasmonic nanophotocatalyst, which synthesized by the hybridization method of sono-dispersion and heat-treatment following with the sono-photodeposition, was applied as an efficient solar-light-driven photocatalyst for degradation of Tetracycline (TC) antibiotic. Also, the Bi2Sn2O7, g-C3N4, Bi2Sn2O7-C3N4, Ag/Bi2Sn2O7 and Ag/C3N4 nanophotocatalysts were synthesized to compare. The characterizations of samples were conducted using XRD, morphology analyses such as FESEM, TEM and AFM, EDX and dot mapping, BET-BJH, FTIR, DRS and pHpzc. The results of morphology analyses showed that about 75.2% of nanoparticles are at the range of 10-20 nm and the minimum and maximum particle sizes were 6.9 nm and 42.2 nm respectively. Moreover, the cubic Ag particles size was about 25.7 nm. Besides, the results of the UV-vis diffuse reflectance spectroscopy analysis illustrated the promotion of the absorption edge of Ag/Bi2Sn2O7-C3N4 (at about 521nm) following with the decrement of band gap (2.38 eV). The photocatalytic activity of Ag/Bi2Sn2O7-C3N4 was obtained higher than other samples (89.1%) due to Bi2Sn2O7-C3N4 type-II heterojunction, porous structure with high specific surface area (66 m2/g) owing to the usage of ultrasonic energy and surface plasmon resonance created using the Ag particle. Moreover, experiments were carried out to investigate the effect of various parameters such as the photocatalyst dosage, initial concentration and pH of TC solution in removing the contaminate molecule from aqueous solution under the light illumination, which was simulated as sunlight, in the presence of photocatalyst and the possible elimination mechanism was proposed for pollutant removal.

    关键词: Sono-Hydrothermal,Solar-Light-Driven,Photo-Deposition,Ag/Bi2Sn2O7-C3N4 Nanophotocatalyst,Tetracycline Degradation

    更新于2025-09-12 10:27:22

  • Pt/TiO2 nanotube photocatalyst – Effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation

    摘要: Direct conversion of solar energy into clean fuels is emerging as an efficient way for the future energy generation and solving environmental issues. Especially, photocatalytic splitting of water into H2 under solar light irradiation is one of the best techniques for clean energy production. Also, decomposition of organic pollutants using solar light is an urgent need to protect the environment. Hence, in the present study, we studied Pt-TiO2 nanotubes based composites for H2 generation and methyl orange dye degradation under solar light irradiation and compared the effect of deposition methods namely photo-deposition and chemical reduction methods. We have achieved the highest rate of H2 generation activity compared to other Pt-TiO2 based composite photocatalysts reported previously, and it is ≈ 173. mmol. h-1.g-1 cat for both photo-deposited and chemically reduced Pt/TiO2 nanotubes. This is about 46.8 folds higher than the pristine TiO2 nanotubes at the same experimental conditions. The selected catalysts were tested for degradation of methyl orange dye, where the catalyst prepared by chemical reduction method showed improved activity (94% degradation in 30 min) compared to the one which is prepared by photo-deposition method (50.5% degradation in 30 min). XPS analysis revealed that the photo-deposited catalyst consist only metallic Pt?, while the chemical-reduction yielded Pt with multiple oxidation states, Pt?, Pt2+ and Pt4+.

    关键词: dye degradation,photo-deposition,chemical reduction,Solar energy,hydrogen production,photocatalysis

    更新于2025-09-10 09:29:36