修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Resonant-Tunnelling Diodes as PUF Building Blocks

    摘要: Resonant-Tunnelling Diodes (RTDs) have been proposed as building blocks for Physical Unclonable Functions (PUFs). In this paper we show how the unique RTD current-voltage (I-V) spectrum can be translated into a robust digital representation. We analyse 130 devices and show that RTDs are a viable PUF building block.

    关键词: Authentication,Physical Security,Identification,Physical Unclonable Functions

    更新于2025-09-23 15:22:29

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Refuting Observer-Independence in Quantum Theory

    摘要: Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random variations in the fabricated hardware to derive a trusted random key. Currently, most PUF designs focus on exploiting process variations intrinsic to the CMOS technology. In recent years, progress in emerging nanoelectronic devices has demonstrated an increase in variation as a consequence of scaling down to the nanoregion. To date, emerging PUFs with nanotechnology have not been fully established, but they are expected to emerge. Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology. In this paper, we review emerging nanotechnology-based PUFs.

    关键词: Physical unclonable functions,reconfigurable PUF,nanotechnology,hardware security,nanoelectronic devices,strong PUF

    更新于2025-09-19 17:13:59

  • [IEEE 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) - Vladivostok, Russia (2019.10.1-2019.10.4)] 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) - Energy Surface of Pit-Patterned Templates for Growth of Space-Arranged Arrays of Quantum Dots a?? Molecular Dynamics Calculations Using High-Efficiency Algorithms

    摘要: With its reprogrammability, low design cost, and increasing capacity, field-programmable gate array (FPGA) has become a popular design platform and a target for infringement. Currently available intellectual property (IP) protection solutions are usually limited to protect single FPGA configurations and require permanent secret key storage in the FPGA. In addition, they cannot provide a commercially popular pay-per-device licensing solution. In this paper, we propose a novel IP protection mechanism to restrict IP’s execution only on specific FPGA devices in order to efficiently protect IPs from being cloned, copied, or used with unauthorized integration. This mechanism can also enforce the pay-per-device licensing, which enables the system developers to purchase IPs from the core vendors at the low price based on usage instead of paying the expensive unlimited IP license fees. In our proposed binding-based mechanism, FPGA vendors embed into each enrolled FPGA device with a physical unclonable function (PUF) customized for FPGAs; IP vendors embed augmented finite-state machines (FSM) into the original IPs such that the FSM can be activated by the PUF responses from the FPGA device. We propose protocols to lock and unlock FPGA IPs, demonstrate how PUF can be embedded onto FPGA devices, and analyze the security vulnerabilities of our PUF-FSM binding method. We implement a 128-bit delay-based PUF on 28-nm FPGAs with only 258 RAM-lookup tables and 256 flipflops. The PUF responses are unique and reliable against environment changes. We also synthesize a variety of FSM benchmark circuits. On large benchmarks, the average timing overhead is 0.64% and power overhead in 0.01%.

    关键词: hardware metering,intellectual property (IP) protection,finite state machine (FSM),Binding,physical unclonable functions (PUFs),field-programmable gate array (FPGA)

    更新于2025-09-19 17:13:59

  • Deep Learning Enabled Optimization of Downlink Beamforming Under Per-Antenna Power Constraints: Algorithms and Experimental Demonstration

    摘要: Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random variations in the fabricated hardware to derive a trusted random key. Currently, most PUF designs focus on exploiting process variations intrinsic to the CMOS technology. In recent years, progress in emerging nanoelectronic devices has demonstrated an increase in variation as a consequence of scaling down to the nanoregion. To date, emerging PUFs with nanotechnology have not been fully established, but they are expected to emerge. Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology. In this paper, we review emerging nanotechnology-based PUFs.

    关键词: Physical unclonable functions,reconfigurable PUF,strong PUF,nanoelectronic devices,nanotechnology,hardware security

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - A Generalized Analytic Model to Tailor Back Contact Design of Bifacial PERC-type Cu(In,Ga)Se <sub/>2</sub> solar cells

    摘要: Information security has emerged as an important system and application metric. Classical security solutions use algorithmic mechanisms that address a small subset of emerging security requirements, often at high-energy and performance overhead. Further, emerging side-channel and physical attacks can compromise classical security solutions. Hardware security solutions overcome many of these limitations with less energy and performance overhead. Nanoelectronics-based hardware security preserves these advantages while enabling conceptually new security primitives and applications. This tutorial paper shows how one can develop hardware security primitives by exploiting the unique characteristics such as complex device and system models, bidirectional operation, and nonvolatility of emerging nanoelectronic devices. This paper then explains the security capabilities of several emerging nanoelectronic devices: memristors, resistive random-access memory, contact-resistive random-access memory, phase change memories, spin torque-transfer random-access memory, orthogonal spin transfer random access memory, graphene, carbon nanotubes, silicon nanowire field-effect transistors, and nanoelectronic mechanical switches. Further, the paper describes hardware security primitives for authentication, key generation, data encryption, device identification, digital forensics, tamper detection, and thwarting reverse engineering. Finally, the paper summarizes the outstanding challenges in using emerging nanoelectronic devices for security.

    关键词: Emerging technologies,memristors,hardware security,PCMs,physical unclonable functions

    更新于2025-09-19 17:13:59

  • Self-assembly of coordination polymers on plasmonic surfaces for computer vision decodable, unclonable and colorful security labels

    摘要: Incorporating security labels with physical unclonable functions (PUFs) into products is considered as the most effective anti-counterfeiting measure. Here we reported a PUF-based security label composed of random colorful patterns. The security label was fabricated through self-assembly of coordination polymers – a cupric bromide complex of pyrazine 1,4-dioxide – on lithographically defined plasmonic surfaces. The coordination polymer exhibits excitation wavelength dependent fluorescence fingerprints, which enables encoding spectral information in the polymer. The fluorescence peaks of each spectrum can be easily converted to a unique anti-counterfeiting barcode. The developed security label also carries 2D graphical information, which can be visualized under bright-field, dark-field and fluorescence multifunctional microscopy. It is multi-colored with high contrast under the bright/dark-field modes and single color under fluorescence mode. The multicolors originate from polymer-thickness dependent optical interference. The encryption with colors on a 50 lm square produces a minimum of 3739 PUF codes for the realized authentication system. Moreover, we developed a convenient and reliable authentication strategy based on the computer vision technique to verify the colorful PUF patterns with different definition, rotation angles, brightness, magnification and a mixture of these factors. A high correct validation rate of 100% is achieved using a match threshold of 0.3.

    关键词: anti-counterfeiting,coordination polymers,plasmonic surfaces,security labels,physical unclonable functions,computer vision

    更新于2025-09-12 10:27:22