- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
The Impact of Peltier Effect on the Temperature Field During Spark Plasma Sintering of Thermoelectric Materials
摘要: We report about the modelling of spark plasma sintering of a line of thermoelectric materials. A significant difference of sintering temperature DTs from 15 K to 110 K was found in the samples studied. The Peltier effect on the graphite-thermoelectric interfaces results in such temperature difference. The rise of sintering temperature leads to the DTs increase. DTs in the vertical direction is 2–3 times higher than in the radial one. Electric insulation modelled in the horizontal graphite–thermoelectric interfaces reduced DTs in all the types of numerically studied samples by 59–92%.
关键词: spark plasma sintering,FEM,SPS,Thermoelectrics,finite elements simulation
更新于2025-09-23 15:22:29
-
Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu7S4-enwrapped Cu2O nanocubes
摘要: P-type Cu2O is an advantageous photocatalyst as the appropriate bandgap structure and low-cost. However, poor photocatalytic and instability of such promising material is still a great challenge. Here the core-shell Cu7S4-coated Cu2O nanocubes (Cu2O/Cu7S4 NCs) were successfully synthesized by solution method coupled with anion exchange, integrated structure of Cu2O/Cu7S4 NCs exhibited apparent improved photocatalytic hydrogen evolution activity compared with Cu2O photocatalyst. Particularly, Cu2O/Cu7S4 NCs had a high hydrogen production rate of 1689.00 μmol·g-1·h-1 under full spectra irradiation with additives of Na2SO3, which was higher than that of Cu2O NCs with a factor of 1.71 times. Excellent synergistic effect of Cu2O and Cu7S4 can be responsible for the improved hydrogen evolution properties, namely, the presence of Cu7S4 with localized surface plasma resonance (LSPR) can promote the photogenerated electrons transfer from the Cu2O surface, prolong the photogenerated holes lifetime, accelerate the separation of photogenerated electrons and holes, and ameliorate the photoelectric properties of semiconductors. The in situ formed multifunctional Cu7S4 layer offers a promising avenue to design photocathodes rationally for photocatalytic water reduction.
关键词: Photocatalyst,Localized surface plasma resonance,Electron-hole separation,Hydrogen evolution reaction,Cu2O/Cu7S4 nanocubes
更新于2025-09-23 15:22:29
-
Influence of Platelet Aggregate Formation in Blood Samples on Light Transmission Aggregometry Results
摘要: Background: Light transmission aggregometry is a standard method used to evaluate platelet function. However, in clinical settings, light transmission aggregometry results sometimes fail to reflect actual platelet hyperactivity. In patients with suspected platelet hyperactivity such as thrombosis, platelet aggregates are frequently detected in citrated blood samples using a scattergram of a hematology analyzer. This study aimed to evaluate the effects of platelet aggregate formation on light transmission aggregometry results. Methods: We used 19 citrated blood samples in which platelet aggregate formation was intentionally induced by a hematology analysis process. Employing fully automated light transmission aggregometry and agonists including adenosine diphosphate or collagen, light transmission aggregometry maximum aggregation percentage, platelet count, and mean platelet volume of platelet-rich plasma before and after platelet aggregate formation were evaluated. Results: Light transmission aggregometry maximum aggregation percentage with adenosine diphosphate or collagen was significantly lower in the samples after than before platelet aggregate formation. Platelet count and mean platelet volume were both decreased by platelet aggregate formation (P < .01), suggesting that maximum aggregation percentage reduction was caused by the decrease in activated large platelets in the platelet-rich plasma. Conclusion: This study clarified that platelet aggregate formation in blood samples interfered with an accurate assessment of platelet hyperactivity. To ensure reliability of light transmission aggregometry results, we must confirm that platelet aggregates have not formed in the sample, especially in those of patients with platelet hyperactivity.
关键词: platelet count,hematology analyzer,light transmission aggregometry,mean platelet volume,platelet-rich plasma,Platelet aggregate
更新于2025-09-23 15:22:29
-
Detection of the conformational changes of <i>Discosoma</i> red fluorescent proteins adhered on silver nanoparticles-based nanocomposites <i>via</i> surface-enhanced Raman scattering
摘要: Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Regardless the targeted application, the current strategies on revealing the relationship between protein structure and function lead to exposure and interaction of proteins with non-biological organic and inorganic solid surfaces. Proper description of the underlying mechanisms will certainly unveil the fundamental protein-adsorption problem and add value to the effort of record and quantification of the conformational changes of the protein native state when interacting with solid surfaces. To that end the application of physics-based diagnostic methods is suitable and highly demanded. Raman spectroscopy appears the most frequently used method for the study of biomolecule recognition, and ultra-sensitive analysis, down to a single molecule. However, to tackle the sensitivity limitations of Raman spectroscopy imposed by the small Raman cross sections, the biological systems should be coupled with metallic nanostructures. The scattering efficiency can be thus increased by several orders of magnitude due to the activation of localized surface plasmon resonance (LSPR) that induces strong enhancement of the electromagnetic (EM) field in the vicinity of the metallic surface. This enables to largely extend the application of Raman spectroscopy in molecular spectroscopy, biomolecule recognition, and ultra-sensitive analysis, down to a single molecule. Besides the sensing properties, the strong EM enhancement can be exploited to probe protein conformational changes under photoexcitation, including real-time monitoring. Therefore, since its discovery in the late 70s, the Surface-Enhanced Raman Scattering (SERS) has proven to be a very powerful and reliable analytical tool for chemo- and bio-sensing, due to the strong enhancement of the vibrational signatures of analytes in different chemical environments. In this context, a lot of resources and time have been employed in the effort to develop plasmonic substrates based on metallic nanostructures aiming at a further increase of the EM enhancement for the realization of noninvasive, highly-sensitive, and large-scale optical sensors. A large variety of metallic nanostructure morphologies and arrangements (nanosphere, nanotriangles, nanodisks, nanorods, nanocubes, etc.) and different coupling geometries (dimers, trimers, arrays, etc.) have been developed up to date for SERS platforms. However, their conversion to macroscopic plasmonic substrates relies generally on the NPs volunteer arrangement on dielectric surfaces (mainly through applying chemical methods), thus often resulting in non-uniform distribution on large areas, without a well-defined control of the spacing between the metallic nanostructures and the probed molecules, high point-to-point variability, scarce reproducibility and stability under irradiation conditions (due to photothermal and photodegradation processes). To overcome the limitations in producing solid SERS substrates various physical approaches, like thermal evaporation, combined nanoimprint lithography-shadow evaporation, gas aggregation source (GAS), pulsed laser deposition (PLD), low-energy ion beam synthesis (LE-IBS), and plasma-based deposition processes, have been proposed in the literature. It is generally acknowledged that the silver nanoparticles (AgNPs) realize the best nanoscale antenna in the visible range for amplifying local electronic and vibrational signals, thus providing unique molecular information in the optical far-field regime. Indeed, compared to gold nanoparticles, the AgNPs offer the advantage of stronger plasmonic enhancement because of lower interference between intraband and interband electronic transitions. Moreover, the use of AgNPs covers another aspect of the relationship between protein structure and function which concerns the biological activity of the AgNPs. Because of their antimicrobial properties, the AgNPs have the potential to impact human health and environment. The biological activity of AgNPs goes both ways, through the activity of ionic silver (Ag+) and through direct contact with the AgNPs resulting in protein denaturation at different cell locations; specifically sensible are those enzymes of the respiratory chain and transport channels. Therefore, there exists a recognized need to address the relationship between protein structure and function from two distinctly different vantage points: (i) quantification of the conformational changes of proteins by using the antenna effect of AgNPs and (ii) analysis of the conformational changes of proteins induced by the AgNPs extreme chemical and biological activities. The intent of this work is to bring additional insight into the mechanisms of adsorption of proteins on solid surfaces through quantification of the conformational changes of proteins adhered on AgNPs-based nanocomposites via SERS. We focus on the wild-type Discosoma recombinant red fluorescent protein (DsRed), belonging to the family of naturally fluorescent proteins (FPs). The strong interest toward the FP family originates from their application in molecular biology as reporters of gene expression, as noninvasive markers in molecular biology and other singular events of cell activity. Potential use of the FPs extends toward therapeutics, tissue regeneration, bioelectronics and protein engineering. The most widely characterized member of this family is the green fluorescent protein (GFP). The lately cloned from reef coral Discosoma sp. DsRed protein possesses the longest yet reported, for a wild-type spontaneously fluorescent protein, excitation and emission maxima at 558 nm and 583 nm, respectively. Owing to its high fluorescence yield the red fluorescent DsRed protein has become important both as a model for understanding fluorescent proteins and as a tool for biomedical research. The DsRed protein and its engineered derivatives have found broad use in cell and molecular biology including fluorescence microscopy as a marker, fluorescence correlation spectroscopy (FCS) and fluorescence activated cell sorting (FACS). Recently, the DsRed was found suitable for rational design of ultra-stable and reversible photoswitches for super-resolution imaging. Moreover, it has been hypothesized that FPs from reef-building corals operate as part of an adaptive mechanism to optically interact and to regulate the symbiotic relationship between corals and photosynthetic algae. Structural rearrangements near the chromophore influence the maturation speed and brightness of the DsRed variants. It is therefore essential to examine the conformational transitions that affect the protein’s ability to transfer optical excitation energy. Studies of the conformational changes of DsRed protein have been reported in the literature but the DsRed Raman fingerprints were investigated only by recurring to chemically synthesized model chromophores. However, the later differ from the wild-type DsRed protein for the absence of the α-helix and β-sheets that naturally surround the chromophore and for the different extensions of the conjugated π-system. The choice of chemically synthesized model chromophores is explained by the complications brought by the presence of immature green species in the solution created as a photoproduct of the red ones, thus often resulting in an unclear or incomplete band assignment. The novelty of this work lays down the point that we work with the wild-type DsRed protein in its native state and not with DsRed model chromophore. All reported experimental studies in the literature were performed in solution. No information on the DsRed protein structural and conformational changes can be found when the DsRed protein is adhered on a solid substrate and irradiated by light. The lack of information on the above discussed issues motivated this study focusing on the investigation of the interaction of wild-type DsRed proteins with AgNPs-based plasmonic substrates. Our approach involves analysis of dehydrated DsRed protein layers in link with natural conditions during drying. To perform the SERS study on the conformational changes of DsRed proteins adhered on AgNPs-based nanocomposites we have elaborated, by plasma process, highly uniform and reproducible plasmonic substrates composed of a single layer of AgNPs coated by a silica layer. Focus was made on the possibility to well control, on a large scale, the AgNPs size distribution and interparticle distances. The resulting uniformity of hot-spot distribution guarantees the reproducibility and stability of this plasmonic sensor. Subsequently, we show how the enhanced EM field in the vicinity of the AgNPs could be employed to detect the presence and identify the conformational changes of proteins, adsorbed and adhered to the plasmonic substrate, during optical irradiation. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.
关键词: plasmonic substrate,protein conformation,surface-enhanced Raman scattering,plasma deposition process,Discosoma red-fluorescent protein DsRed,Silver nanoparticles
更新于2025-09-23 15:22:29
-
[IEEE 2018 Asia Communications and Photonics Conference (ACP) - Hangzhou, China (2018.10.26-2018.10.29)] 2018 Asia Communications and Photonics Conference (ACP) - Coherent Detection of Terahertz Waves with a Gas Plasma
摘要: We demonstrate an alternative coherent detection technique via terahertz induced second-harmonic (TISH) in a laser-induced plasma for terahertz waves. In this method, the probe beam requires neither high voltage bias nor optically field bias.
关键词: gas plasma,terahertz detection,Ultrafast nonlinear optics
更新于2025-09-23 15:22:29
-
550-W Ultraviolet Exciplex Source for Pulsed Power Applications
摘要: The investigation of a high output power, arc lamp exciplex ultraviolet (UV) source for pulsed power applications is presented. The arc lamp generates up to 550 W from XeF exciplex radiation at 351 nm, totaling to nearly 0.15-mJ total radiated UV energy over the duration of the UV pulse. With an ellipsoidal reflector, the arc lamp produces 400 W/cm2 and up to 0.1 mJ of UV light onto a 1-cm2 area. A complete experimental investigation of the arc lamp for both XeCl (308 nm) and XeF (351 nm) exciplex sources operated under varying excitation and pressure conditions is reported. As an application, the arc lamp is successfully utilized as an illumination source for an intrinsically triggered, wide bandgap SiC photoconductive semiconductor switch (PCSS), where a PCSS ON-state resistance of 500 Ω is achieved.
关键词: ultraviolet sources,Arc discharges,gas discharge devices,plasma devices
更新于2025-09-23 15:22:29
-
[IEEE 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Kyoto, Japan (2018.7.9-2018.7.13)] 2018 31st International Vacuum Nanoelectronics Conference (IVNC) - Field emission assisted micro plasma discharges at vacuum and atmospheric pressures
摘要: Spatially confined non-equilibrium plasmas at vacuum and atmospheric pressure in the dimensions from a few microns to one millimeter are a promising approach to the generation and maintenance of stable glow discharges. The realization of these micro-discharges or micro-plasmas enable more accurate investigations in the field of micro plasma research. We report on field emission assisted micro plasmas excited by an alternating current with frequencies up to 1 kHz. Due to the field enhancement caused by an array of Si nano-tip structures the ignition voltage of stable plasma discharges can be reduced by 30%.
关键词: low-temperature plasma,field emission array,dielectric barrier discharge,plasma discharge
更新于2025-09-23 15:21:21
-
Treatment of graphene films in the early and late afterglows of N2 plasmas: comparison of the defect generation and N-incorporation dynamics
摘要: Graphene films grown on copper substrate by chemical vapor deposition were exposed to the flowing afterglow of a reduced-pressure N2 plasma sustained by microwave electromagnetic fields (surface-wave plasma). Two set of conditions were examined by controlling the gas flow rate: the late afterglow (LA) characterized by high number densities of reactive N atoms and the early afterglow (EA) in which significant populations of metastable N2(A) states and positive ions (N2+ and N4+) coexist with plasma-generated N atoms. LA treatments of graphene films show monotonous and steady incorporation of nitrogen atoms along with very low damage. However, given the very mild LA treatment conditions, a large part of the N atoms remains weakly bonded to the graphene surface; a feature ascribed to the plasma-induced functionalization of airborne hydrocarbon contaminants. In such conditions, graphitic inclusion of plasma-generated N atoms is limited to native defect sites. On the other hand, the presence of highly energetic species in the EA induces significant damage combined with much higher N-incorporation. Detailed Raman analysis of EA-treated samples further reveals a transition from vacancy-type defects to much larger multi-vacancies with increasing treatment time. This complete set of data indicates that, through a judicious control of the populations of reactive N atoms, metastable N2(A) states, and positive ions (N2+ and N4+), the flowing afterglow of microwave N2 plasmas represents a highly promising tool for precise, post-growth tuning of the defect generation and N-incorporation dynamics in graphene films.
关键词: Microwave plasmas,Plasma-graphene interactions,Flowing afterglows,Plasma-induced modification of materials and nanomaterials
更新于2025-09-23 15:21:21
-
Energetic Ions during Plasma-Enhanced Atomic Layer Deposition and their Role in Tailoring Material Properties
摘要: Plasma-enhanced atomic layer deposition (PEALD) has obtained a prominent position in the synthesis of nanoscale films with precise growth control. Apart from the well-established contribution of highly reactive neutral radicals towards film growth in PEALD, the ions generated during plasma exposure can also play a significant role. In this work, we report on the measurements of ion energy and flux characteristics on grounded and biased substrates during plasma exposure to typically used for PEALD (O2, H2, N2) were measured in a commercial 200-mm remote inductively coupled plasma ALD system equipped with RF substrate biasing. IFEDFs were obtained using a gridded retarding field energy analyzer and the effect of varying ICP power, pressure and bias conditions on the ion energy and flux characteristics of the three reactive plasmas were investigated. The properties of three material examples – TiOx, HfNx and SiNx – deposited using these plasmas were investigated on the basis of the energy and flux parameters derived from IFEDFs. Material properties were analyzed in terms of the total ion energy dose delivered to a growing film in every ALD cycle, which is a product of the mean ion energy, total ion flux and plasma exposure time. The properties responded differently to the ion energy dose depending on whether it was controlled with RF substrate biasing where ion energy was enhanced, or without any biasing where plasma exposure time was increased. This indicated that material properties were influenced by whether or not ion energies exceeded energy barriers related to physical atom displacement or activation of ion-induced chemical reactions during PEALD. Furthermore, once ion energies were enhanced beyond these threshold barriers with RF substrate biasing, material properties became a function of both the enhanced ion energy and the duration for which the ion energy was enhanced during plasma exposure. These results have led to a better insight into the relation between energetic ions and the ensuing material properties, e.g., by providing energy maps of material properties in terms of the ion energy dose during PEALD. It serves to demonstrate how the measurement and control of ion energy and flux characteristics during PEALD can provide a platform for synthesizing nanoscale films with the desired material properties.
关键词: ion energy dose,ion energy flux,ion bombardment,atomic layer deposition,RFEA,thin film,substrate biasing,ion flux,ion energy control,retarding field energy analyzer,plasma ALD
更新于2025-09-23 15:21:21
-
823 mA/mm drain current density and 945 MW/cm2 Baliga’s figure of merit enhancement-mode GaN MISFETs with a novel PEALD-AlN/LPCVD-Si3N4 dual gate dielectric
摘要: In this letter, we demonstrate a novel PEALD-AlN/LPCVD-Si3N4 dual gate dielectric employed in enhancement-mode GaN MISFETs, where the gate recess is fabricated based on our proposed self-terminating gate recess etching technique using GaN cap layer as recess mask. By using LPCVD-Si3N4 and PEALD-AlN dual gate dielectric layer, the devices exhibit a high quality gate dielectric and a good GaN channel interface, yielding a high gate swing up to 18V and a high channel effective mobility of 137 cm2/V?s at such high gate bias. Thus, the fabricated devices feature a high maximum drain current density of 823 mA/mm, a threshold voltage of 2.6 V, an on-resistance of 7.4 Ω?mm, and an ON/OFF current ratio of 108 with gate-drain distance of 2 μm. Meanwhile, a high OFF-state breakdown voltage of 1290 V is achieved with 10 μm gate-drain distance. The corresponding specific on-resistance is as low as 1.76 mΩ?cm2, leading to a high Baliga’s ?gure of merit of 945 MW/cm2.
关键词: self-terminating etching,enhancement-mode GaN MISFETs,plasma-enhanced atomic layer deposition (PEALD) AlN,LPCVD Si3N4
更新于2025-09-23 15:21:21