修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • ?± spiral nanoslit and the higher order plasmonic vortex generation

    摘要: In view of the conciseness of a spiral nanoslit and the limited order of the generated vortex, a kind of nanometer spirals named α spirals are proposed to generate the higher order plasmonic vortex. Theoretical analysis provides the basis for the advancement of α spiral. The proposed spiral can generate the plasmonic vortex and the extreme order of the generated vortex depends on the parameter α. The numerical simulations definite the valid region of the plasmonic vortex generated by the α spiral. Discussions about the validity range of the α spiral nanoslit and the influence of the film material are beneficial to generate the high order vortex. This work builds a platform for the generation of the higher order plasmonic vortex using the simple spiral nanostructure and it can extend the potential applications of higher order plasmonic vortices.

    关键词: Theory and design,Plasmonic vortex,Nanostructure,Surface Plasmons

    更新于2025-09-19 17:13:59

  • Chiral Second-Harmonic Generation from Monolayer WS <sub/>2</sub> /Aluminum Plasmonic Vortex Metalens

    摘要: Two-dimensional spiral plasmonic structures have emerged as a versatile approach to generate near-field vortex fields with tunable topological charges. We demonstrate here a far-field approach to observe the chiral second-harmonic generation (SHG) at designated visible wavelengths from a single plasmonic vortex metalens. This metalens comprises an Archimedean spiral slit fabricated on atomically flat aluminum epitaxial film, which allows for precise tuning of plasmonic resonances and subsequent transfer of two-dimensional materials on top of the spiral slit. The nonlinear optical measurements show a giant SHG circular dichroism. Furthermore, we have achieved an enhanced chiral SHG conversion efficiency (about an order of magnitude greater than the bare aluminum lens) from monolayer tungsten disulfide (WS2)/aluminum metalens, which is designed at the C-exciton resonance of WS2. Since the C-exciton is not a valley exciton, the enhanced chiral SHG in this hybrid system originates from the plasmonic vortex field-enhanced SHG under the optical spin-orbit interaction.

    关键词: optical spin-orbit interaction,Surface plasmonic vortex metalens,aluminum epitaxial film,chiral nonlinearity,second-harmonic generation,monolayer tungsten disulfide

    更新于2025-09-19 17:13:59