修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1992 条数据
?? 中文(中国)
  • AIP Conference Proceedings [Author(s) PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AUTOMOTIVE INNOVATION GREEN ENERGY VEHICLE: AIGEV 2018 - Kuantan, Malaysia (25–26 July 2018)] - Chemical bath deposition of In2S3 thin films as promising material and buffer layer for solar cells

    摘要: The copper(I) and indium thin films are obtained by chemical bath deposition (CBD). Their elemental composition and microstructure were particularly studied by means of the x-ray photoelectron spectroscopy (XPS). The change in the surface microstructure of thin films depending on the temperature and the composition of reaction bath were determined by means of scanning electron microscopy (SEM).

    关键词: chemical bath deposition,solar cells,thin films,buffer layer,In2S3

    更新于2025-11-21 11:20:48

  • Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface

    摘要: Low-band-gap metal halide perovskite semiconductor based on mixed Sn/Pb is a key component to realize high-ef?ciency tandem perovskite solar cells. However, the mixed perovskites are unstable in air due to the oxidation of Sn2+. To overcome the stability problem, we introduced N-(3-aminopropyl)-2-pyrrolidinone into the CH3NH3Sn0.5Pb0.5IxCl3-x thin ?lm. The carbonyl group on the molecule interacts with Sn2+/Pb2+ by Lewis acid coordination, forming vertically oriented 2D layered perovskite. The 2D phase is seamlessly connected to the bulk perovskite crystal, with a lattice coherently extending across the two phases. Based on this 2D/3D hybrid structure, we assembled low-band-gap Sn-based perovskite solar cells with power conversion ef?ciency greater than 12%. The best device was among the most stable Sn-based organic-inorganic hybrid perovskite solar cells to date, keeping 90% of its initial performance at ambient condition without encapsulation, and more than 70% under continuous illumination in an N2-?lled glovebox for over 1 month.

    关键词: power conversion efficiency,2D/3D interface,stability,Sn/Pb-based,perovskite solar cells

    更新于2025-11-21 11:18:25

  • Hollow hierarchical structure Co0.85Se as efficient electrocatalyst for the triiodide reduction in dye-sensitized solar cells

    摘要: The exploration of nonprecious metal-based electrocatalysts with high efficiency for the triiodide reduction is critical for the practical applications of the dye-sensitized solar cells. Herein, we develop a facile one-step hydrothermal method to synthesize hollow hierarchical structure Co0.85Se. Under the methanol-water reaction system, the product named as hollow hierarchical structure Co0.85Se-M has the largest specific surface area (215.36 m2 g?1) and the best crystallinity than other products obtained from other alcohol-water reaction systems. When this electrocatalyst is applied as a counter electrode for the dye-sensitized solar cells, it exhibits a small peak-to-peak separation (Epp, 97 mV) for the reduction of I3?/I? redox couple. It is found that the catalytic activity of Co0.85Se is closely dependent on the crystallinity. Moreover, the reactivity pathway is identified by density functional theory, which confirms that triiodide is reduced to iodide ion on Co0.85Se with a smaller energy barrier (~0.65 eV) than on Pt (~1.18 eV). Both experimental and theoretical results demonstrate Co0.85Se-M as an ideal counter electrode material for the dye-sensitized solar cells with a higher power conversion efficiency (8.76%) than Pt counter electrode (7.20%).

    关键词: Dye-sensitized solar cells,Hollow hierarchical structure,Cobalt selenides,Electrocatalytic activity,Triiodide reduction

    更新于2025-11-21 11:03:13

  • Investigation of valence plasmon excitations in GMZO thin film and their suitability for plasmon-enhanced buffer-less solar cells

    摘要: The approach of eliminating buffer layer in conjunction with plasmon-enhanced transparent conduction oxide (TCO) layer is an attractive methodology to realize low-cost ultrathin buffer-less solar cells (SCs) by introducing plasmon-enhanced absorption and reduced fabrication steps. Here, we report a novel method to generate wide-band sputter-stimulated plasmonic feature in Ga-doped-MgZnO (GMZO) thin-films, which are observed due to the different metallic and metal-oxide nanoclusters formation. Through an extensive analysis of photoelectron spectroscopy, spectroscopic ellipsometry, and field-emission scanning electron microscope measurements the evaluation of plasmonic features and correlation of them with various nanoclusters inside GMZO thin-film is performed. Additionally, the suitability and expected performance of plasmon-enhanced GMZO thin-film based buffer-less SCs are probed through; 1) band-offset analysis at the plasmon enhanced-GMZO/CIGSe heterojunction; 2) simulation studies to analyze the effect of conduction band-offset (CBO) on the performance of the buffer-less SCs; 3) predicting the performance of the buffer-less SC using the parameters of GMZO thin-films with varying CBO, and 4) envisaging the concept of ultrathin buffer-less SC with calculated CBO and absorber layer thickness (300 nm) for ultrathin SCs. Moreover, at the experimentally calculated band-offset with ultrathin absorber layer thickness (300 nm), theoretically calculated buffer-less SC performance parameters estimated to be open-circuit voltage (Voc): 0.75 V, short-circuit current density (Jsc): 17.29 mA/cm2, fill-factor (FF): 80.5%, and efficiency (Eff): 10.46%.

    关键词: Ultrathin solar cells,UPS,CIGSe,Plasmons

    更新于2025-11-21 11:03:13

  • Investigation of valence electron excitation and plasmonic enhancement in sputter grown NMZO thin films: For energy harvesting applications

    摘要: We report a novel approach of sputter-stimulated plasmonic generation in Na-doped MgZnO (NMZO) thin films. Sputtering of material during film growth by utilizing secondary direct-coupled ion-source present in dual-ion beam sputtering system leads to the generation of nanoclusters of its constituent elements due to different sputtering-out rates of various elements present in the films. The authentication of plasmonic generation in NMZO is conducted as follows a) identification of plasmonic signature in electron energy loss spectra obtained by ultraviolet photoelectron spectroscopy measurement, b) valence bulk, valence surface, and particle plasmon resonance energy calculations are performed, and each plasmon peak is indexed with corresponding plasmon energy peak of different nanoclusters, and c) spectroscopic ellipsometric measurement is deployed to verify plasmonic behavior by investigating different optical properties. Additionally, incorporation of the plasmonic feature along with alkali metals plays a crucial role in the improvement of the performance of solar cells. Therefore, plasmon enhanced NMZO as a backscattering layer in between CIGSe/back contact is probed to ascertain the additional benefits of 1) Na incorporation into the absorber layer as a result of the Na diffusion from the NMZO layer, and 2) improvement in the morphology of the CIGSe thin film with the incorporation of NMZO layer in between the back-contact and CIGSe. The diffusion of Na into the absorber layer is probed by deploying secondary ion mass spectroscopy measurements, and improvement in the morphology of CIGSe with the incorporation of NMZO layer between the back-contact/absorber is investigated using field-emission scanning electron microscope analysis.

    关键词: UPS,NMZO,Ultrathin solar cells,Plasmons,Sputtered

    更新于2025-11-21 11:03:13

  • Coral-Like Perovskite Nanostructures for Enhanced Light-Harvesting and Accelerated Charge Extraction in Perovskite Solar Cells

    摘要: A novel coral-like perovskite nanostructured layer was grown on a compact perovskite foundation layer by the facile surface modification with dimethylformamide/isopropanol (DMF/IPA) as co-solvent. Surface morphological characterizations with SEM and XRD analyses revealed a growing mechanism of the new morphology, which was composed of the perovskite decomposition and recrystallization, excessive-PbI2 extraction, and sequential formation of coral-like nanostructured perovskite layer. The coral-like perovskite nanostructures resulted in significant light scattering, enhancing the light harvesting efficiency, and thus augmenting the photocurrent density. Moreover, the geometric configuration of the perovksite solar cells was changed from planar to bulk heterojunction, which results in the acceleration of charge separation and extraction due to the high surface area at the interface between the obtained perovskite and hole-transport layers. The optimal perovskite solar cell exhibited an impressive power conversion efficiency (PCE) of 19.47%, as compared to that of the pristine cell (17.19%).

    关键词: solar cells,Bulk heterojunction,light-harvesting,coral-like nanostructures,surface modification,perovskite

    更新于2025-11-21 11:01:37

  • Surface Passivation of Perovskite Solar Cells Toward Improved Efficiency and Stability

    摘要: The advancement of perovskite solar cells (PVSCs) technology toward commercialized promotion needs high efficiency and optimum stability. By introducing a small molecular material such as tetratetracontane (TTC, CH3(CH2)42CH3) at the fullerene (C60)/perovskite interface of planar p-i-n PVSCs, we significantly reduced the interfacial traps, thereby suppressing electron recombination and facilitating electron extraction. Consequently, an improved efficiency of 20.05% was achieved with a high fill factor of 79.4%, which is one of the best performances for small molecular-modified PVSCs. Moreover, the hydrophobic TTC successfully protects the perovskite film from water damage. As a result, we realized a better long-term stability that maintains 87% of the initial efficiency after continuous exposure for 200 h in air.

    关键词: Surface defect,Charge transport,Surface passivation,Perovskite solar cells

    更新于2025-11-21 11:01:37

  • Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source

    摘要: Perovskite materials hold great potential as photovoltaic power sources for portable devices owing to their mechanical flexibility and high performance; however, the flexibility and e?ciency require further improvement to attain practical viability. We investigated the mechanical fracture behavior of polycrystalline perovskite films by varying the substrate thickness and applying the neutral plane concept. This enabled us to fabricate a crack-free perovskite film on an ultra-thin substrate (B2.5 mm) and to demonstrate ultra-flexible solar cells with high e?ciency (17.03%) with unprecedented flexibility sustained after 10 000 cycles of bending at a 0.5 mm radius. This represents a high e?ciency of 13.6% for large-area flexible perovskite solar cells (1.2 cm2), fabricated by using a hybrid transparent electrode composed of a metal mesh grid and conducting polymer. Using a protective layer to achieve the neutral plane concept, our ultra-flexible perovskite solar cells are demonstrated to be durable even after 100 crumpling cycles. Our approach paves the way to fabricate flexible perovskite solar cells for portable power sources.

    关键词: wearable power source,Perovskite solar cells,mechanical durability,neutral plane concept,flexible

    更新于2025-11-21 10:59:37

  • Understanding the Impact of Cu-In-Ga-S Nanoparticles Compactness on Holes Transfer of Perovskite Solar Cells

    摘要: Although a compact holes-transport-layer (HTL) ?lm has always been deemed mandatory for perovskite solar cells (PSCs), the impact their compactness on the device performance has rarely been studied in detail. In this work, based on a device structure of FTO/CIGS/perovskite/PCBM/ZrAcac/Ag, that effect was systematically investigated with respect to device performance along with photo-physics characterization tools. Depending on spin-coating speed, the grain size and coverage ratio of those CIGS ?lms on FTO substrates can be tuned, and this can result in different hole transfer ef?ciencies at the anode interface. At a speed of 4000 r.p.m., the band level offset between the perovskite and CIGS modi?ed FTO was reduced to a minimum of 0.02 eV, leading to the best device performance, with conversion ef?ciency of 15.16% and open-circuit voltage of 1.04 V, along with the suppression of hysteresis. We believe that the balance of grain size and coverage ratio of CIGS interlayers can be tuned to an optimal point in the competition between carrier transport and recombination at the interface based on the proposed mechanism. This paper de?nitely deepens our understanding of the hole transfer mechanism at the interface of PSC devices, and facilitates future design of high-performance devices.

    关键词: perovskite solar cells,compactness,Cu-In-Ga-S,hole transfer,holes transport layer,recombination

    更新于2025-11-21 10:59:37

  • Transparent Sn-doped In2O3 electrodes with a nanoporous surface for enhancing the performance of perovskite solar cells

    摘要: We report on a simple and efficient process to enhance the performance of perovskite solar cells by using ITO electrodes with a nanoporous surface formed by wet-etching of self-agglomerated Ag nanoparticles. Effective removal of the Ag nanoparticles embedded in the surface of the ITO electrodes result in a nanoporous structure without changing the ITO's sheet resistance (10.17 Ω/square) and optical transmittance (89.08%) at a 550 nm wavelength. Examinations with a scanning electron microscope, a transmission electron microscope, and two-dimensional porous mapping show that the nanoporous ITO surface has an increased contact area with the electron transport layer, which enhanced the carrier extraction efficiency of the perovskite solar cells. Compare to perovskite solar cells fabricated on typical ITO with a flat surface morphology, the perovskite solar cells fabricated on the nanoporous-surface ITO show a higher fill factor of 81.1% and a power conversion efficiency of 20.1%. These results indicate that modified ITO surfaces with nano-scale porosity provide a simple and efficient method to improve the power conversion efficiency of perovskite solar cells without a complicated process.

    关键词: Contact area,Nanoporous surface,Sn-doped In2O3,Ag agglomeration,Perovskite solar cells

    更新于2025-11-21 10:59:37