- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
On the imprecisions that may be induced when applying the Blaugrund approximation for the analysis of Doppler-shift attenuation lifetime measurements
摘要: It is shown that the Blaugrund approximation could have led to some imprecise lifetime determinations in the past which used the Doppler-shift attenuation method (DSAM). Comparison with Monte Carlo simulations of the slowing-down process show that there is not an easy way to judge using them on the reliability of old data.
关键词: Lineshapes analysis in DSAM measurements,Monte Carlo simulations,Lifetime determination,Blaugrund approximation
更新于2025-09-23 15:21:01
-
Reliability and Ecological Aspects of Photovoltaic Modules || Comparing Different PV Module Types and Brands Under Working Conditions in the United Kingdom
摘要: The present work demonstrates the performance evaluation and economic analysis of different PV module types and brands at the working conditions of Padiham (53.5 N, 2.3 W) in the UK. The total area of PV plant was assumed to be 100 square meters. The simulations were carried out for modules installed on the roof and on the south-facing fa?ade of a residential building. The comparison study is carried out to define the most suitable module type and brands for the considered place in the current study. The energy and economic performance of the grid-connected PV system are analyzed under the meteorological conditions of Padiham. The modules were characterized by evaluating their annual electrical energy generation and different figures of merit of the grid-connected PV systems such as the investment, annual profit, net present value, levelized cost of electricity, and the payback time. The simulations show that in this specific setup, monocrystalline modules have the best energy performance, while thin-film modules have the best economic performance.
关键词: PV system,different PV brands,potential,simulations
更新于2025-09-23 15:21:01
-
Molecular Simulations of Laser Spike Annealing of Block-Copolymer Lamellar Thin-Films
摘要: We use molecular dynamic simulations to study the phase behavior of a coarse-grained lamella-forming A-b-B di-block copolymer under thin-film soft confinement for different heating cycle lengths, film thicknesses, and substrate-polymer affinities. This model describes the effect on thin-film morphology with a free surface (air-polymer interface) and a solid substrate. Our simulation results were first validated by showing that they capture changes for the order-disorder transition temperature with annealing conditions consistent with those found in laser spike annealing experiments, when the vertical lamella phase formed on neutral substrates. In addition, simulations with a substrate selective for a particular block revealed the formation of other phases including a mixed vertical-horizontal lamella and a metastable island phase having horizontal but incomplete lamella layers. The nanoscale roughness features of this island phase, and hence its surface wettability, can be tuned with suitable choices of chemistry and annealing conditions.
关键词: thin-film,nanoscale roughness,order-disorder transition,phase behavior,laser spike annealing,molecular dynamic simulations,block copolymer
更新于2025-09-23 15:21:01
-
: <i>Ab initio</i> and Monte Carlo approaches
摘要: The effects of nonmagnetic impurity doping on magnetic and ferroelectric properties of multiferroic delafossite CuCrO2 are investigated by means of density functional theory calculations and Monte Carlo simulations. Density functional theory calculations show that replacing up to 30% of Cr3+ ions by Ga3+ ones does not significantly affect the remaining Cr-Cr superexchange interactions. Monte Carlo simulations show that CuCr1?xGaxO2 preserves its magnetoelectric properties up to x ≈ 0.15 with a spiral ordering, while it becomes disordered at higher fractions. Antiferromagnetic transition shifts towards lower temperatures with increasing x and eventually disappears at x ≈ 0.2. Our simulations show that Ga3+ doping increases the Curie-Weiss temperature of CuCr1?xGaxO2, which agrees well with experimental observations. Moreover, our results show that the incommensurate ground-state configuration is destabilized by Ga3+ doping under zero applied field associated with an increase of frustration. Finally, coupling between noncollinear magnetic ordering and electric field is reported for x ≤ 0.15 through simulating P -E hysteresis loops, which leads to ferroelectricity in the extended inverse Dzyaloshinskii-Moriya model.
关键词: CuCrO2,multiferroic,Monte Carlo simulations,ferroelectric properties,magnetic properties,density functional theory,delafossite,Ga doping
更新于2025-09-23 15:21:01
-
Radiation reaction in electrona??beam interactions with high-intensity lasers
摘要: Charged particles accelerated by electromagnetic fields emit radiation, which must, by the conservation of momentum, exert a recoil on the emitting particle. The force of this recoil, known as radiation reaction, strongly affects the dynamics of ultrarelativistic electrons in intense electromagnetic fields. Such environments are found astrophysically, e.g. in neutron star magnetospheres, and will be created in laser–matter experiments in the next generation of high-intensity laser facilities. In many of these scenarios, the energy of an individual photon of the radiation can be comparable to the energy of the emitting particle, which necessitates modelling not only of radiation reaction, but quantum radiation reaction. The worldwide development of multi-petawatt laser systems in large-scale facilities, and the expectation that they will create focussed electromagnetic fields with unprecedented intensities > 1023 Wcm?2, has motivated renewed interest in these effects. In this paper I review theoretical and experimental progress towards understanding radiation reaction, and quantum effects on the same, in high-intensity laser fields that are probed with ultrarelativistic electron beams. In particular, we will discuss how analytical and numerical methods give insight into new kinds of radiation–reaction-induced dynamics, as well as how the same physics can be explored in experiments at currently existing laser facilities.
关键词: Laser-wakefield acceleration,Radiation reaction,Synchrotron radiation,Particle-in-cell simulations,Strong-field QED,High-power lasers
更新于2025-09-23 15:21:01
-
Electron dynamics in low pressure capacitively coupled radio frequency discharges
摘要: In low temperature plasmas, the interaction of the electrons with the electric field is an important current research topic that is relevant for many applications. Particularly, in the low pressure regime ((cid:1)10 Pa), electrons can traverse a distance that may be comparable to the reactor dimensions without any collisions. This causes “nonlocal,” dynamics which results in a complicated space- and time-dependence and a strong anisotropy of the distribution function. Capacitively coupled radio frequency (CCRF) discharges, which operate in this regime, exhibit extremely complex electron dynamics. This is because the electrons interact with the space- and time-dependent electric field, which arises in the plasma boundary sheaths and oscillates at the applied radio frequency. In this tutorial paper, the fundamental physics of electron dynamics in a low pressure electropositive argon discharge is investigated by means of particle-in-cell/Monte Carlo collisions simulations. The interplay between the fundamental plasma parameters (densities, fields, currents, and temperatures) is explained by analysis (aided by animations) with respect to the spatial and temporal dynamics. Finally, the rendered picture provides an overview of how electrons gain and lose their energy in CCRF discharges.
关键词: low pressure,particle-in-cell/Monte Carlo collisions simulations,electron dynamics,plasma parameters,capacitively coupled radio frequency discharges
更新于2025-09-23 15:21:01
-
Photonic Design, Verification, and Implementation
摘要: The requirement of different sectors such as healthcare, telecommunications, and industry for new systems that will provide higher performance and lower foot-print has triggered the development of many new photonic-based solutions. A key aspect of the development of an optical system is the design and verification before its production to reduce failure and, as consequence, the time-to-market. There are commercial software solutions able to simulate and to analyze the packaging of optical systems, photonic integrated circuits (PICs) based devices, transmission systems & networks, and fiber-optic lasers & amplifiers. Also, it is possible to take into account thermal and mechanical issues by multiphysics simulations. In this article, we explore the different available solutions to simulate your optical design before the production at the component level including free-form optics and photonic integrated circuits (PICs) and also at the system level.
关键词: photonic integrated circuits,multiphysics simulations,photonic-based solutions,optical system design
更新于2025-09-23 15:21:01
-
Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption
摘要: Graphene quantum dots (GQDs) are an allotrope of carbon with a planar surface amenable to functionalization and nanoscale dimensions that confer photoluminescence. Collectively, these properties render GQDs an advantageous platform for nanobiotechnology applications, including optical biosensing and delivery. Towards this end, noncovalent functionalization offers a route to reversibly modify and preserve the pristine GQD substrate, however, a clear paradigm has yet to be realized. Herein, we demonstrate the feasibility of noncovalent polymer adsorption to GQD surfaces, with a specific focus on single-stranded DNA (ssDNA). We study how GQD oxidation level affects the propensity for polymer adsorption by synthesizing and characterizing four types of GQD substrates ranging ~60-fold in oxidation level, then investigating noncovalent polymer association to these substrates. Adsorption of ssDNA quenches intrinsic GQD fluorescence by 31.5% for low-oxidation GQDs and enables aqueous dispersion of otherwise insoluble no-oxidation GQDs. ssDNA-GQD complexation is confirmed by atomic force microscopy, by inducing ssDNA desorption, and with molecular dynamics simulations. ssDNA is determined to adsorb strongly to no-oxidation GQDs, weakly to low-oxidation GQDs, and not at all for heavily oxidized GQDs. Finally, we reveal the generality of the adsorption platform and assess how the GQD system is tunable by modifying polymer sequence and type.
关键词: molecular dynamics simulations,Graphene quantum dots,oxidation level,ssDNA,adsorption,noncovalent functionalization,fluorescence quenching
更新于2025-09-23 15:21:01
-
Synthesis of “lotus root”-like mesoporous titanium dioxide and its effects on UV response to aconitine release
摘要: Mesoporous titanium dioxide with a “lotus root”-like structure was synthesized for the first time using an improved template-free method. The structure has a BET (Brunauer Emmett Teller) surface area of 688.11 m2/g, a pore volume of 0.743 cm3/g, and a pore size of 3.59 nm. Aconitine, a botanical insecticide, could be loaded onto the mesoporous titanium dioxide via simply soaking the structure and had a maximum loading of 17.6 %. UV spectroscopy was utilized to explore the drug release behaviors, and the results showed that aconitine-loaded mesoporous titanium dioxide particles UV irradiated could successfully release aconitine with a release rate of 46.24%, which was significantly higher than the samples lacking UV irradiation (36.80%). Meanwhile, the release rate of aconitine (48.94 %) for pH 5.5 was significantly higher than that for pH 7.0 (42.09 %). The results of microcalorimetry revealed that both the enthalpy change (?H) and entropy change (?S) were negative (?H < 0, ?S < 0) for the whole process of aconitine loading onto the “lotus root”-like mesoporous titanium dioxide support. Hydrogen bonding was the driving force for drug loading, and this was also verified using Monte Carlo simulations. These results show that the “lotus root”-like mesoporous titanium dioxide material has some potential applications such as the storage and use of plant pesticides.
关键词: “Lotus root”-like mesoporous titanium dioxide,Monte Carlo simulations,hydrogen bonding,UV-responsed drug release
更新于2025-09-23 15:21:01
-
Parametric study of ultra-intense laser interaction with uniform and nano-porous near-critical plasmas
摘要: Responses of the uniform near-critical plasma (UNCP) and nano-porous near-critical plasma (NPNCP) upon interaction with a short-intense laser have been scrutinized using two-dimensional (2D) particle-in-cell simulations. Maximum proton energy variation by the deposition of uniform and nano-porous layers in front of a solid target for a wide range of laser intensities (normalized amplitude a0 = 5–25) and average densities of the front layer ne = 0.3 ? 3nc (where nc is the critical density) has been parametrically studied. It is found that the proton maximum energy for the front layers with sub-10 μm thicknesses is independent of the target porosity and density. However, in the relatively thick targets, the nano-porous structure decreases the laser energy absorption and, subsequently, the maximum proton energy compared to the uniform one. The results indicate that by employing UNCPs instead of NPNCPs, at the moderate laser intensity, the maximum proton energy reveals a 23% enhancement. This increment could be explained by rapid self-focusing of the laser pulse and dominant direct laser electron acceleration regime on the well-formed plasma channel in the UNCP layer. However, in the case of NPNCPs, the laser scattering from the plasma structure makes it less intense and more disordered, which influences the efficient laser energy coupling to the electrons.
关键词: proton acceleration,near-critical plasmas,particle-in-cell simulations,ultra-intense laser,laser-plasma interaction
更新于2025-09-23 15:21:01