修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

30 条数据
?? 中文(中国)
  • Super-resolution Mapping of Enhanced Emission by Collective Plasmonic Resonances

    摘要: Plasmonic particle arrays have remarkable optical properties originating from their collective behavior, which results in resonances with narrow line widths and enhanced electric fields extending far into the surrounding medium. Such resonances can be exploited for applications in strong light?matter coupling, sensing, lasing, and light harvesting, nonlinear nanophotonics, solid-state lighting. However, as the lattice constants associated with plasmonic particle arrays are on the order of their resonance wavelengths, mapping the interaction between point dipoles and plasmonic particle arrays cannot be done with diffraction-limited methods. Here, we map the enhanced emission of single fluorescent molecules coupled to a plasmonic particle array with ~20 nm in-plane resolution by using stochastic super-resolution microscopy. We find that extended lattice resonances have minimal influence on the spontaneous decay rate of an emitter but instead can be exploited to enhance the outcoupling and directivity of the emission. Our results can guide the rational design of future optical devices based on plasmonic particle arrays.

    关键词: light?matter interaction,nanophotonics,single molecule localization,collective resonances,plasmonics,super-resolution microscopy

    更新于2025-11-25 10:30:42

  • Super-resolution microscopy reveals significant impact of M2e-specific monoclonal antibodies on influenza A virus filament formation at the host cell surface

    摘要: Influenza A virions are highly pleomorphic, exhibiting either spherical or filamentous morphology. The influenza A virus strain A/Udorn/72 (H3N2) produces copious amounts of long filaments on the surface of infected cells where matrix protein 1 (M1) and 2 (M2) play a key role in virus filament formation. Previously, it was shown that an anti-M2 ectodomain (M2e) antibody could inhibit A/Udorn/72 virus filament formation. However, the study of these structures is limited by their small size and complex structure. Here, we show that M2e-specific IgG1 and IgG2a mouse monoclonal antibodies can reduce influenza A/Udorn/72 virus plaque growth and infectivity in vitro. Using Immuno-staining combined with super-resolution microscopy that allows us to study structures beyond the diffraction limit, we report that M2 is localized at the base of viral filaments that emerge from the membrane of infected cells. Filament formation was inhibited by treatment of A/Udorn/72 infected cells with M2e-specific IgG2a and IgG1 monoclonal antibodies and resulted in fragmentation of pre-existing filaments. We conclude that M2e-specific IgGs can reduce filamentous influenza A virus replication in vitro and suggest that in vitro inhibition of A/Udorn/72 virus replication by M2e-specific antibodies correlates with the inhibition of filament formation on the surface of infected cells.

    关键词: influenza A virus,viral replication,super-resolution microscopy,filament formation,M2e-specific monoclonal antibodies

    更新于2025-11-21 11:08:12

  • Illumination conditions in microsphere-assisted microscopy

    摘要: White-light microsphere-assisted microscopy is a full-field and label-free imaging promising technique making it possible to achieve a sub-diffraction lateral resolution. However, performance of this technique depends not only on the geometrical parameters but also on the illumination conditions of the optical system. In the present work, experimental measurements and computer simulations have been performed in air in order to determine the influence of the two diaphragm apertures of the K?hler arrangement and the spectral width of the light source on both the depth-of-focus of the microsphere and the optimisation of the imaging contrast. Furthermore, the super-resolution phenomenon is demonstrated and the cumulated optical aberrations are shown through the measurement of the optical transfer function for the different arrangements of the illumination part.

    关键词: Super-resolution microscopy,Illumination,Microsphere,Optical transfer function,Imaging depth

    更新于2025-10-24 16:39:32

  • Single Particle Tracking and Super-Resolution Imaging of Membrane-Assisted Stop-and-Go Diffusion and Lattice Assembly of DNA Origami

    摘要: DNA nanostructures offer the possibility to mimic functional biological membrane components due to their nanometer-precise shape configurability and versatile biochemical functionality. Here we show that the diffusional behavior of DNA nanostructures and their assembly into higher order membrane-bound lattices can be controlled in a stop-and-go manner and that the process can be monitored with super-resolution imaging. The DNA structures are transiently immobilized on glass-supported lipid bilayers by changing the mono- and divalent cation concentrations of the surrounding buffer. Using DNA-PAINT super-resolution microscopy, we confirm the fixation of DNA origami structures with different shapes. On mica-supported lipid bilayers, in contrast, we observe residual movement. By increasing the concentration of NaCl and depleting MgCl2, a large fraction of DNA structures restarts to diffuse freely on both substrates. After addition of a set of oligonucleotides that enables three Y-shaped monomers to assemble into a three-legged shape (triskelion), the triskelia can be stopped and super-resolved. Exchanging buffer and adding another set of oligonucleotides triggers the triskelia to diffuse and assemble into hexagonal 2D lattices. This stop-and-go imaging technique provides a way to control and observe the diffusional behavior of DNA nanostructures on lipid membranes that could also lead to control of membrane-associated cargos.

    关键词: single-particle tracking,DNA origami,diffusion,super-resolution microscopy,lipid membrane,DNA nanotechnology

    更新于2025-09-23 15:23:52

  • [Methods in Molecular Biology] T-Cell Motility Volume 1930 (Methods and Protocols) || Three-Dimensional Structured Illumination Microscopy (3D-SIM) to Dissect Signaling Cross-Talks in Motile T-Cells

    摘要: Visualization of signal transduction events in T-cells has always been a challenge due to their miniscule size. Recent advancement in super-resolution microscopy techniques presents many new opportunities to navigate the spatial and temporal signaling cross-talks in motile T-cells. Here, we provide technical details, optimal conditions, and critical practical considerations that need to be taken into account during cell handling, sample preparation, and image acquisition of motile T-cells for performing three-dimensional structured illumination microscopy (3D-SIM).

    关键词: 3D-SIM,Immunostaining,Super-resolution microscopy

    更新于2025-09-23 15:22:29

  • SMoLR: visualization and analysis of single-molecule localization microscopy data in R

    摘要: Background: Single-molecule localization microscopy is a super-resolution microscopy technique that allows for nanoscale determination of the localization and organization of proteins in biological samples. For biological interpretation of the data it is essential to extract quantitative information from the super-resolution data sets. Due to the complexity and size of these data sets flexible and user-friendly software is required. Results: We developed SMoLR (Single Molecule Localization in R): a flexible framework that enables exploration and analysis of single-molecule localization data within the R programming environment. SMoLR is a package aimed at extracting, visualizing and analyzing quantitative information from localization data obtained by single-molecule microscopy. SMoLR is a platform not only to visualize nanoscale subcellular structures but additionally provides means to obtain statistical information about the distribution and localization of molecules within them. This can be done for individual images or SMoLR can be used to analyze a large set of super-resolution images at once. Additionally, we describe a method using SMoLR for image feature-based particle averaging, resulting in identification of common features among nanoscale structures. Conclusions: Embedded in the extensive R programming environment, SMoLR allows scientists to study the nanoscale organization of biomolecules in cells by extracting and visualizing quantitative information and hence provides insight in a wide-variety of different biological processes at the single-molecule level.

    关键词: Image analysis,Image quantification,Super-resolution,Microscopy,R,Single-molecule localization

    更新于2025-09-23 15:22:29

  • A Review on Optical Imaging of DNA Nanostructures and Dynamic Processes

    摘要: This article reviews recent advances in optical imaging methods for characterizing self-assembled DNA nanosystems, with particular emphasis on super-resolved fluorescence microscopy. Several advanced strategies are developed to obtain accurate and detailed images of intricate DNA nanogeometries and to perform precise tracking of molecular motions in dynamic processes. We present state-of-the-art instruments and imaging strategies including localization microscopy and spectral imaging. We discuss how they are used in biological studies and biomedical applications, and also provide current challenges and future outlook. Overall, this review serves as a practical guide in optical microscopy for the field of DNA nanotechnology.

    关键词: super-resolution microscopy,fluorescence microscopy,optical imaging,DNA nanostructures,DNA nanotechnology

    更新于2025-09-23 15:21:21

  • A Polymerizable Photoswitchable Fluorophore for Super-Resolution Imaging of Polymer Self-Assembly and Dynamics

    摘要: Single-molecule super-resolution microscopy has become a standard imaging tool in the life sciences for visualizing nanostructures in situ, but the application of this technique in polymer science is much less explored. A key bottleneck is the lack of fluorophores and simple covalent attachment strategies onto polymer chains. Here, we report a functional diarylethene-based photoswitchable fluorophore that can be directly incorporated into polymer backbones through copolymerization, which significantly streamlines the labeling strategy, with no further postcoupling reactions or purifications needed. The attachment of fluorophores onto selectively labeled polymers enables super-resolution imaging of a series of model polymer blend systems with different nanostructures and chemical compositions. As each individual fluorophore is able to switch several times on average between its bright and dark state, multiple time-lapse images can be acquired to observe the dynamic nanostructural evolution of polymer blends upon solvent vapor annealing. With this demonstration of a universal, simplified labeling strategy and the ability to image polymer assembly under native conditions, this reported fluorophore may promote the widespread use of super-resolution microscopy in the polymer community.

    关键词: diarylethene,polymer dynamics,super-resolution microscopy,photoswitchable fluorophore,polymer self-assembly

    更新于2025-09-23 15:21:01

  • Graphene-Enabled, Spatially Controlled Electroporation of Adherent Cells for Live-Cell Super-resolution Microscopy

    摘要: The incorporation of exogenous molecules into live cells is essential for both biological research and therapeutic applications. In particular, for the emerging field of super-resolution microscopy of live mammalian cells, it remains a challenge to deliver tailored, often cell-impermeable, fluorescent probes into live cells for target labeling. Here, utilizing the outstanding mechanical, electrical, and optical properties of graphene, we report a facile approach that enables both high-throughput delivery of fluorescent probes into adherent mammalian cells and in situ super-resolution microscopy on the same device. ~90% delivery efficiencies are achieved for free dyes and dye-tagged affinity probes, short peptides, and whole antibodies, thus enabling high-quality super-resolution microscopy. Moreover, we demonstrate good spatiotemporal controls, which, in combination with the ready patternability of graphene, allow for the spatially selective delivery of two different probes for cells at different locations on the same substrate.

    关键词: electroporation,graphene,intracellular delivery,live-cell labeling,super-resolution microscopy

    更新于2025-09-23 15:19:57

  • Microscope laser assisted photooxidative activation of bioorthogonal ClickOx probes

    摘要: A photoactivatable fluorogenic tetrazine-rhodaphenothiazine probe was synthesized and studied in light-assisted, bioorthogonal labeling schemes. Experimental results revealed that the bioorthogonally conjugated probe efficiently sensitizes 1O2 generation upon illumination with green or orange light and undergoes self-oxidation leading to an intensely fluorescent sulfoxide product. An added value of the present probe is that it is also suitable for STED super-resolution microscopy using a 660 nm depletion laser.

    关键词: tetrazine-rhodaphenothiazine,fluorogenic,STED,super-resolution microscopy,photoactivatable,bioorthogonal,labeling

    更新于2025-09-23 15:19:57