修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Microstructural characterization of nanostructured Al2O3-ZrO2 eutectic layer by laser rapid solidification method

    摘要: In the present work, nanostructured surface layers of Al2O3-ZrO2 eutectic with a thickness of approximate 1000 μm and free of cracks and pores were produced on the surface of conventionally-sintered Al2O3-ZrO2 ceramic via the laser irradiation rapid solidification process. The molten pool geometry and microstructure were characterized by scanning electron microscopy and Raman spectroscopy. The geometrical evolution of molten pool in response to laser power and laser scanning velocity was established, where the top view of molten pool exhibits a circular shape at low velocities and gradually evolves into an oval-shaped surface at high velocities. Singular Al2O3-ZrO2 eutectic colonies with a size of 100-200 μm, which is formed around a spontaneously nucleated dendritic ZrO2 core, are found on the surface of laser-remelted layer. The eutectic colony has an interphase spacing of 190-280 nm. The variation of eutectic spacing with growth rate is essentially linear on the logarithmic scale as λ=KV-0.4 by binary regression analysis. Predicted by the Jackson-Hunt theory on eutectic solidification (JH theory), the eutectic spacing is consistent with the inverse-square-root dependence on growth rate with a proportionality constant of 3.32. The eutectic colonies consist of α-Al2O3, t-ZrO2 and m-ZrO2 phases, where α-Al2O3 and t-ZrO2 are the dominant phases and the m-ZrO2 phase increases with the decrease of laser scanning velocity.

    关键词: Al2O3-ZrO2,Nanoeutectic layer,Laser remelting,Surface nanostructuring

    更新于2025-11-28 14:24:20

  • Micro and Nanoscale Laser Processing of Hard Brittle Materials || Surface nanostructuring of hard brittle materials

    摘要: In the recent developments of laser processing technology, there has been exponentially growing interest in surface structuring. A wide variety of shapes and sizes can be achieved for the structures depending on the laser parameters applied. In this chapter, we will be focusing on nanoscale surface structuring. Laser surface nanostructuring is such an attractive process, from a technological point of view, as it is so simple. Nanostructures can be generated on a large surface area using a single-step process; this is impossible on hard brittle materials by any other methods. However, as is the case with many simple technologies, the fundamental science behind it is highly complex. Surface structure generation is attributed to a complex combination of inter- and intrapulse physical processes. This chapter will attempt to clarify the scientific processes of the nanostructure formation mechanism, to describe recent trends in nanostructuring technology, and to present innovative applications of nanostructured surfaces with particular focus on the surface nanostructuring of silicon and zirconia.

    关键词: zirconia,surface nanostructuring,LIPSS,silicon,laser processing

    更新于2025-09-23 15:21:01

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Fabrication of Tuned Lipss-Based Metallic Polarization Gratings

    摘要: Surface nanostructuring has received increasing attention in recent years due to the wide range of applications in which it offers advantages. Particularly, Laser-Induced Periodic Surface Structures (LIPSS) have proven useful for surface functionalization [1]. LIPSS are periodic formations generated in most materials when irradiated with linearly polarized radiation. The orientation of these structures is directly linked to the polarization of the incident light, while other parameters of their morphology such as period and depth can be controlled with the number of pulses, fluence, wavelength and pulse duration of the incident light. Due to their periodic nature, LIPSS behave optically as nanogratings [2], which have been largely studied as polarization converters (or Polarization Gratings, PGs). PGs are structures that introduce a phase shift in the incident light, which produces a change in its polarization state [3]. Therefore, PGs have potential applications as reflective waveplates [4], showing advantages over transmission waveplates such as higher damage thresholds and a lower temporal dispersion of the pulse. So far, PGs have been fabricated with methods such as direct laser interference or lithography [5]. The main drawbacks of these methods include limited choice of periods for the generated structures or a complex and environmentally unfriendly fabrication process, which could be overcome by a fabrication method based on LIPSS. In order to fabricate LIPSS-based PGs, stainless steel samples were irradiated with a 800 nm femtosecond Ti:Sapphire laser. The laser was focused onto the surface of the sample through a cylindrical lens with a focal length of 10 cm. The sample was translated perpendicular to the laser beam with a mechanical stage at a constant speed, generating LIPSS in a large area of 5 mm x 5 mm in a few seconds. By varying the fluence of the beam and the speed of the stage, LIPSS with different parameters were fabricated. Topography of the samples were characterized with AFM and SEM (Fig. 1a) microscopes, and polarization conversion and reflectivity were examined with a polarimeter. Results show that a gradual change in LIPSS morphology is associated to a gradual change in the ellipticity of the laser beam (Fig. 1b). It is also observed that LIPSS geometry changes smoothly with processing parameters. Therefore, it is proven that LIPSS-based PGs can be fabricated experimentally, and that the properties of such PGs can be tuned changing the LIPSS geometry, as expected. These results are in good agreement with the performed FDTD simulations for different LIPSS morphologies.

    关键词: Surface nanostructuring,Polarization Gratings,LIPSS,Polarization conversion,Femtosecond laser

    更新于2025-09-12 10:27:22