修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1 条数据
?? 中文(中国)
  • Effect of Thionation on the Performance of PNDIT2-Based Polymer Solar Cells

    摘要: All-polymer solar cells have gained traction in recent years with solar cell performance of over 11% power conversion efficiency (PCE) recently demonstrated. The n-type polymer PNDIT2, also known as N2200 or P(NDI2OD-T2), has been extensively used for both photovoltaic as well as field-effect transistor applications. When paired with donor materials that have appropriately aligned energy-levels, PNDIT2 has exhibited device efficiencies over 10% PCE, and organic field effect transistors fabricated with PNDIT2 exhibit mobilities over 1 cm2/Vs. Thionation of the NDI moiety, which is the substitution of imide oxygen with sulfur atoms, has been shown to improve the field-effect transistor performance of NDI-based small molecules. Applying this strategy to PNDIT2, we explored the effect that thionation, in a 2S-trans configuration, has on the performance of all-polymer solar cells fabricated with the donor polymer PTB7-Th. Solar cells were fabricated with the original polymer, PNDIT2, as a reference, and an optimized efficiency of 4.85% was achieved. As samples with 100% conversion to 2S-trans configuration could not be produced due to synthetic limitations, batches with increasing ratios of 1S to 2S-trans thionation (15:85, 7:93, and 5:95) were studied. Devices with thionated PNDIT2 exhibited a systematic lowering of photovoltaic parameters with increasing thionation, resulting in device efficiencies of just 0.84%, 0.62%, and 0.42% PCE. The lower performance of the thionated blends is attributed to poor π-π stacking order in the thionated PNDIT2 phase, resulting in lower electron mobilities and finer phase separation. Evidence in support of this conclusion is provided by grazing incidence wide-angle X-ray scattering, transmission electron microscopy, photoluminescence quenching, transient photocurrent analysis, and SCLC measurements.

    关键词: π-π stacking,PNDIT2,Thionation,All-polymer solar cells,Power conversion efficiency

    更新于2025-10-22 19:40:53