- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Ligand Engineering for Improved All‐Inorganic Perovskite Quantum Dot‐MoS <sub/>2</sub> Monolayer Mixed Dimensional van der Waals Phototransistor
摘要: Combining intriguing physical properties of 2D crystals and intrinsically remarkable optical properties of halide perovskite quantum dots (QDs), the 0D–2D perovskite QD–based mixed dimensional van der Waals heterostructure (MvdWH) is considered as promising for optoelectronic applications. Even though the interfacial electronic structure of MvdWHs is sufficiently engineered to manipulate the charge carrier behavior, the issue of interfacial charge transfer efficiency originating from the residue ligands that are inevitably introduced by the QDs is still prominently remained. From this perspective, for the first time, a solution-processed surface ligand density control strategy is demonstrated to balance the QD surface passivation and the interfacial charge carrier extraction and injection efficiency in the 0D–2D MvdWH system. The accurate adjustment of ligand density outside QDs enables the subsequent modulation on interfacial charge carrier transfer efficiency from the aspect of electronic and optoelectronic properties. Furthermore, such kind of ligand engineering toward MvdWH interface is substantially demonstrated in a photogating mechanism–based phototransistor with an improved photoresponsivity as high as 1.13 × 105 A W?1. These results may push forward the evolution of 0D–2D mixed dimensional van der Waals optoelectronics.
关键词: mixed-dimensional van der Waals heterostructures,perovskite quantum dots,phototransistors,MoS2,ligand engineering
更新于2025-11-14 17:04:02
-
Resonance Tunneling Phenomena in Two-Dimensional Multilayer van der Waals Crystalline Systems
摘要: Works, mostly experimental, concerning the most interesting features of application of the resonant tunneling spectroscopy to a new type of heterosystems, van der Waals heterostructures, have been briefly reviewed. These heterostructures appeared after the recent discovery of two-dimensional crystals, which are a new class of materials beginning with graphene. The role of the angular matching of crystal lattices of conducting graphene electrodes of van der Waals systems in carrier tunneling between them has been analyzed together with the closely related problems of satisfaction of conservation laws in tunneling transitions. Manifestations of multiparticle correlation interactions between carriers in van der Waals systems such as Wigner crystallization of electrons in a two-dimensional electron gas in a magnetic field and Bose condensation of excitons in parallel two-dimensional electron gases have been briefly discussed.
关键词: angular matching,momentum conservation,resonant tunneling spectroscopy,graphene,two-dimensional crystals,Wigner crystallization,van der Waals heterostructures,Bose condensation
更新于2025-09-23 15:23:52
-
Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures
摘要: The combination of mixed-dimensional semiconducting materials can provide additional freedom to construct integrated nanoscale electronic and optoelectronic devices with diverse functionalities. In this work, we report a high-performance dual-channel phototransistor based on one-dimensional (1D)/two-dimensional (2D) trigonal selenium (t-Se)/ReS2 heterostructures grown by chemical vapor deposition. The injection and separation efficiency of photogenerated electron–hole pairs can be greatly improved due to the high-quality interfacial contact between t-Se nanobelts and ReS2 films. Compared with bare ReS2 film devices, the dual-channel phototransistor based on t-Se/ReS2 heterostructure exhibits considerable enhancement with the responsivity (R) and detectivity (D*) up to 98 A·W–1 and 6 × 1010 Jones at 400 nm illumination with an intensity of 1.7 mW·cm?2, respectively. Besides, the response time can also be reduced by three times of magnitude to less than 50 ms due to the type-II band alignment at the interface. This study opens up a promising avenue for high-performance photodetectors by constructing mixed-dimensional heterostructures.
关键词: phototransistor,van der Waals heterostructures,ReS2,trigonal selenium (t-Se) nanobelt
更新于2025-09-23 15:23:52
-
Dispersion relations of elastic waves in three-dimensional cubical piezoelectric phononic crystal with initial stresses and mechanically and dielectrically imperfect interfaces
摘要: The shape of individual building blocks is an important parameter in bottom-up self-assembly of nano-structured materials. A simple shape change from sphere to spheroid can significantly affect the assembly process due to the modification to the orientational degrees of freedom. When a layer of spheres is placed upon a layer of spheroids, the strain at the interface can be minimized by the spheroid taking a special orientation. C70 fullerenes represent the smallest spheroids, and their interaction with a sphere-like C60 is investigated. We find that the orientation of the C70 within a close-packed C70 layer can be steered by contacting a layer of C60. This orientational steering phenomenon is potentially useful for epitaxial growth of multilayer van der Waals molecular heterostructures.
关键词: interface,self-assembly,epitaxy,scanning tunnelling microscopy,graphene,van der Waals heterostructures,fullerene
更新于2025-09-23 15:23:52
-
Gate-Tunable Thermal Metal–Insulator Transition in VO <sub/>2</sub> Monolithically Integrated into a WSe <sub/>2</sub> Field-Effect Transistor
摘要: Vanadium dioxide (VO2) shows promise as a building block of switching and sensing devices because it undergoes an abrupt metal-insulator transition (MIT) near room temperature, where the electrical resistivity changes by orders of magnitude. A challenge for versatile applications of VO2 is to control the MIT by gating in the field-effect device geometry. Here, we demonstrate a gate-tunable abrupt switching device based on a VO2 microwire that is monolithically integrated with a two-dimensional (2D) tungsten diselenide (WSe2) semiconductor by van der Waals stacking. We fabricated the WSe2 transistor using the VO2 wire as the drain contact, titanium as the source contact, and hexagonal boron nitride as the gate dielectric. The WSe2 transistor was observed to show ambipolar transport, with higher conductivity in the electron branch. The electron current increases continuously with gate voltage below the critical temperature of the MIT of VO2. Near the critical temperature, the current shows an abrupt and discontinuous jump at a given gate voltage, indicating that the MIT in the contacting VO2 is thermally induced by gate-mediated self-heating. Our results have paved the way for the development of VO2-based gate-tunable devices by the van der Waals stacking of 2D semiconductors, with great potential for electronic and photonic applications.
关键词: 2D materials,field-effect transistor,tungsten diselenide,phase-change materials,vanadium dioxide,metal-insulator transition,van der Waals heterostructures
更新于2025-09-23 15:22:29
-
Moire intralayer excitons in a MoSe <sub/>2</sub> /MoS <sub/>2</sub> heterostructure
摘要: Spatially periodic structures with a long range period, referred to as moir′e pattern, can be obtained in van der Waals bilayers in the presence of a small stacking angle or of lattice mismatch between the monolayers. Theoretical predictions suggest that the resulting spatially periodic variation of the band structure modifies the optical properties of both intra and interlayer excitons of transition metal dichalcogenides heterostructures. Here, we report on the impact of the moir′e pattern formed in a MoSe2/MoS2 heterobilayer encapsulated in hexagonal boron nitride. The periodic in-plane potential results in a splitting of the MoSe2 exciton and trion in both emission and absorption spectra. The observed energy difference between the split peaks is fully consistent with theoretical predictions.
关键词: valley polarization,van der Waals heterostructures,moir′e pattern,moir′e excitons,Transition metal dichalcogenides
更新于2025-09-23 15:21:21
-
Topological Insulator-Based van der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions
摘要: Three dimensional (3D) topological insulators (TIs) are an important class of materials with applications in electronics, spintronics and quantum computing. With the recent development of truly bulk insulating 3D TIs, it has become possible to realize surface dominated phenomena in electrical transport measurements e.g. the quantum Hall (QH) effect of massless Dirac fermions in topological surface states (TSS). However, to realize more advanced devices and phenomena, there is a need for a platform to tune the TSS or modify them e.g. gap them by proximity with magnetic insulators, in a clean manner. Here we introduce van der Waals (vdW) heterostructures in the form of topological insulator/insulator/graphite to effectively control chemical potential of the TSS. Two types of gate dielectrics, normal insulator hexagonal boron nitride (hBN) and ferromagnetic insulator Cr2Ge2Te6 (CGT) are utilized to tune charge density of TSS in the quaternary TI BiSbTeSe2. hBN/graphite gating in the QH regime shows improved quantization of TSS by suppression of magnetoconductivity of massless Dirac fermions. CGT/graphite gating of massive Dirac fermions in the QH regime yields half-quantized Hall conductance steps and a measure of the Dirac gap. Our work shows the promise of the vdW platform in creating advanced high-quality TI-based devices.
关键词: quantum Hall effect,van der Waals heterostructures,Topological insulators,ferromagnetic insulators
更新于2025-09-23 15:21:21
-
Photogenerated-Carrier Separation and Transfer in Two-Dimensional Janus Transition Metal Dichalcogenides and Graphene van der Waals Sandwich Heterojunction Photovoltaic Cells
摘要: Two-dimensional (2D) Janus transition metal dichalcogenides (JTMDs) show direct band gaps and strong visible-light absorption with promising applications in photovoltaic (PV) cells. Here, we investigate the electronic structures and dynamics of photogenerated carriers in 2D JTMDs and graphene van der Waals sandwich heterojunction (G/JTMDs/G) photovoltaic cells by using first-principles calculations. We find that the intrinsic built-in electric field in JTMDs results in an asymmetry potential, which can be used to effectively enhance the separation and transfer of photogenerated carriers from JTMDs to different graphene layers with a preferred direction within hundreds of femtoseconds in the G/JTMDs/G heterostructures. Furthermore, the photogenerated electrons (holes) can transfer from monolayer MoSSe (MoSeTe) to the graphene sheets by the Se side with lower (higher) potential, while the transfer of the photogenerated holes (electrons) is prohibited due to the large separation between donor and acceptor states.
关键词: First-principles calculations,van der Waals heterostructures,Janus transition metal dichalcogenides,Photogenerated carriers,Two-dimensional materials,Graphene,Charge transfer,Photovoltaic cells
更新于2025-09-23 15:21:01
-
Wafer-Scale Fabrication of 2D PtS <sub/>2</sub> /PtSe <sub/>2</sub> Heterojunctions for Efficient and Broadband Photodetection
摘要: The fabrication of van der Waals heterostructures have mainly extends to two-dimensional materials that are exfoliated from their bulk counterparts, which is greatly limited by high-volume manufacturing. Here, we demonstrate multilayered PtS2/PtSe2 heterojunctions covering a large area on SiO2/Si substrate with a maximum size of 2" in diameter, offering throughputs that can meet the practical application demand. Theoretical simulation was carried out to understand the electronic properties of the PtS2/PtSe2 heterojunctions. Zero-bias photoresponse in the heterojunctions is observed under laser illumination of different wavelengths (405 to 2200 nm). The PtS2/PtSe2 heterojunctions exhibit broadband photoresponse, high quantum efficiency at infrared wavelengths with lower bounds for the external quantum efficiencies (EQE) being 1.2% at 1064 nm, 0.2% at 1550 nm and 0.05% at 2200 nm, and also relatively fast response time at the dozens of millisecond level. The large area, broadband 2D heterojunction photodetector demonstrated in this work further corroborating the great potential of 2D materials in the future low-energy optoelectronics.
关键词: van der Waals heterostructures,self-driving operation,quantum efficiency,broadband photodetection,photoresponsivity,wafer-scale fabrication
更新于2025-09-23 15:21:01
-
Electron quantum metamaterials in van der Waals heterostructures
摘要: In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques—for example in the unique colouring of butterfly wings—to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer structuring of electronic matter at scales at and below the electron wavelength, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures—such as mechanical pick-up/transfer assembly—atomic-scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length scales (such as the electron wavelength, screening length and electron mean free path). Yet electronic metamaterials promise far richer categories of behaviour than those found in conventional optical metamaterial technologies. This is because, unlike photons, which scarcely interact with each other, electrons in subwavelength-structured metamaterials are charged and strongly interact. As a result, an enormous variety of emergent phenomena can be expected and radically new classes of interacting quantum metamaterials designed.
关键词: van der Waals heterostructures,nanoscale structure,electronic matter,electron quantum metamaterials,optical metamaterials
更新于2025-09-23 15:21:01