修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

238 条数据
?? 中文(中国)
  • Ferroelectric enhanced photoelectrochemical water splitting in BiFeO3/TiO2 composite photoanode

    摘要: A facile sol-gel methodology was used to synthesize single-phase BiFeO3 (BFO) film on TiO2 photoanode to improve photoelectrochemical (PEC) water-splitting efficiency. The BFO films with controllable thickness induced a considerable ferroelectric polarization under bias voltage, which effectively tuned the electric band bending of BFO/TiO2. The photocurrent density of the as-prepared BFO-5/TiO2 could reach up to 11.25 mA/cm2, which is over 20 times higher than that of bare TiO2. Moreover, the positively poled BFO-5/TiO2 photoanode yielded a photocurrent density of 28.75 mA/cm2 at 1.5 V vs.SCE under AM 1.5G illumination. This work suggests that BFO/TiO2 with combined ferroelectric and semiconducting features could be a promising solution to improve PEC performance by concurrently promoting the light absorption and charge-separation and transportation properties.

    关键词: BiFeO3,Ferroelectric polarization,Photoanode,Water-splitting

    更新于2025-09-23 15:23:52

  • Effect of Mo doping and NiFe-LDH cocatalyst on PEC water oxidation efficiency

    摘要: The NiFe-layered double hydroxide (LDH) nanosheets were decorated on the surface of doped BiVO4 to structure an integrating photoanode for improving solar photoelectrochemical (PEC) water splitting efficiency, which is a dynamic research topic to solve the energy crisis and remit environmental pollution caused by fossil fuel combustion. The fabricated photoanode exhibits rapid response to visible light, enhances photocurrent density and shows significant cathodic shift compared to BiVO4. Moreover, the measured incident photon-to-current efficiency (IPCE) of the photoanode is comparable to that reported in the literature. The amount of evolution oxygen was measured and the faradaic efficiency produced oxygen was also obtained by comparing the theoretical calculation value. The enhancement is attributed to the increase of the carrier density, the effective separation of photogenerated electron-hole and consuming of the photogenerated holes accumulated at the electrode surface, which has been confirmed by electrochemical impedance spectra (EIS) and the intensity modulated photocurrent spectra (IMPS). The work may offer a promising method for designing a high efficiency and low-cost photoanode.

    关键词: NiFe-layered double hydroxides.,BiVO4,Mo-doping,Photoelectrochemical water splitting

    更新于2025-09-23 15:23:52

  • Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays

    摘要: Efficient charge separation is essential for improving the photo-conversion efficiency in both photocatalytic and photoelectrochemical (PEC) water splitting. Herein, we have demonstrated the selective spatial-construction of Au nanolayer and SrTiO3 nanocubes on inner and outer surfaces of TiO2 nanotubes for enhancing the charge separation and PEC activity. More specifically, the outer SrTiO3 nanocubes with a spontaneous ferroelectric polarization could effectively engineer the electrical band bending of TiO2 nanotubes, facilitating hole transfer to the electrode/electrolyte interface for water oxidation. Meanwhile, the inner Au nanolayer with a favorable plasmonic electric-field induced by the visible light promote charge separation and rapid electron transfer to the counter electrode for hydrogen generation. Benefiting from the spatial dual-electric fields, this SrTiO3/TiO2/Au ternary-photoanode exhibits a significantly enhanced photocurrent density of 2.11 mA cm?2 at 1.23 V (vs. RHE), which is nearly 3.5 times higher than that of the pristine TiO2 nanotube arrays. Additionally, a low onset potential (~ 0.17 VRHE) for water oxidation as well as an excellent PEC stability has also been achieved. These demonstrations may provide a new strategy toward the rational construction of highly efficient PEC water splitting systems.

    关键词: TiO2 nanotube,Water splitting,Plasmonic,Ferroelectric

    更新于2025-09-23 15:23:52

  • Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting

    摘要: This paper presents a p–n heterojunction photoanode based on a p-type porphyrin metal–organic framework (MOF) thin film and an n-type rutile titanium dioxide nanorod array for photoelectrochemical water splitting. The TiO2@MOF core–shell nanorod array is formed by coating an 8 nm thick MOF layer on a vertically aligned TiO2 nanorod array scaffold via a layer-by-layer self-assembly method. This vertically aligned core–shell nanorod array enables a long optical path length but a short path length for extraction of photogenerated minority charge carriers (holes) from TiO2 to the electrolyte. A p–n junction is formed between TiO2 and MOF, which improves the extraction of photogenerated electrons and holes out of the TiO2 nanorods. In addition, the MOF coating significantly improves the efficiency of charge injection at the photoanode/electrolyte interface. Introduction of Co(III) into the MOF layer further enhances the charge extraction in the photoanode and improves the charge injection efficiency. As a result, the photoelectrochemical cell with the TiO2@Co-MOF nanorod array photoanode exhibits a photocurrent density of 2.93 mA/cm2 at 1.23 V (vs. RHE), which is ~ 2.7 times the photocurrent achieved with bare TiO2 nanorod array under irradiation of an unfiltered 300 W Xe lamp with an output power density of 100 mW/cm2.

    关键词: p–n junction,photoanode,titanium dioxide,metal-organic framework,water-splitting

    更新于2025-09-23 15:23:52

  • Energy diagram analysis of photoelectrochemical water splitting process

    摘要: Photoelectrochemical (PEC) water splitting process is thoroughly revisited based on the energy diagram to elucidate the experimental observations. The TiO2 nanorod structure is studied as the model system for the photoanode of the PEC cell due to its stability in both acidic and basic solutions. The photocurrents with the external bias are examined under the various electrolytes of H2SO4, NaCl, and NaOH. The energy diagrams of the whole PEC system related to the water splitting process are interactively constructed in three-electrode configuration with the vacuum level as the common reference. Electrode potentials and photocurrents measured with the external bias in dark and under light are systematically correlated with the energy diagram of the PEC system. The pH dependent flat-band potential is explained by applying the pH dependent Helmholtz layer potential at the interface. In addition, the distribution of the applied potential in the PEC system during the water splitting process is understood by in-depth understanding of the energy band diagram.

    关键词: band analysis,TiO2 nanorod,photoelectrochemical water splitting

    更新于2025-09-23 15:23:52

  • Fully Solar-Powered Uninterrupted Overall Water-Splitting Systems

    摘要: Extensive research efforts have been recently devoted to the development of self-driven electrocatalytic water-splitting systems to generate clean hydrogen chemical fuels. Currently, self-driven electrocatalytic water-splitting devices are powered by solar cells, which operate intermittently, or by aqueous batteries, which deliver stored electric power, leading to high operating costs and environmental pollution. Thus, a fully solar-powered uninterrupted overall water-splitting system is greatly desirable. Here, the solar cells, stable output voltage of 1.75 V Ni–Zn batteries, and high efficiency zinc–nickel–cobalt phosphide electrocatalysts are successfully assembled together to create a 24 h overall water-splitting system. Specifically, the silicon-based solar cells enable the charging of aqueous Ni–Zn batteries for energy storage as well as providing sufficient energy for electrocatalysis throughout the day; in addition, the high-capacity Ni–Zn batteries offer a steady output voltage for overall water-splitting at night. Such an uninterrupted solar-to-hydrogen system opens up exciting opportunities for the development and applications of renewable energy.

    关键词: uninterrupted,solar-powered,water-splitting system,aqueous rechargeable batteries

    更新于2025-09-23 15:23:52

  • Artificial Mn4Ca-cluster with Exchangeable Solvent Molecules Mimicking the Oxygen-Evolving Center in Photosynthesis

    摘要: The natural Mn4Ca-cluster in photosystem II serves as a blueprint to develop artificial water-splitting catalysts in artificial photosynthesis. Although significant advances have recently been achieved, it remains great challenges to prepare robust artificial Mn4Ca-cluster to precisely mimic the structure and function of the biological catalyst in the laboratory. Here, we report the isolation and structural characterization of two Mn4CaO4-complexes from polar solvents acetonitrile or N, N-dimethylformamide, which closely mimics the two water molecules on calcium ion, as well as, the oxidation states of the four manganese ions and the main geometric structure of the natural Mn4Ca-cluster. These new artificial Mn4Ca-complexes provide important chemical clues to understand the structure and mechanism of its biological paragon.

    关键词: heterometallic complexes,photosynthesis,bioinorganic chemistry,water splitting,manganese

    更新于2025-09-23 15:23:52

  • Electronic Structure and Room Temperature Ferromagnetism in Gd-doped Cerium Oxide Nanoparticles for Hydrogen Generation via Photocatalytic Water Splitting

    摘要: Enhanced visible light photocatalytic activity of Gd-doped CeO2 nanoparticles (NPs) is experimentally demonstrated, whereas there are very few reports on this mechanism with rare earth doping. All-pure and Gd-doped CeO2 NPs are synthesized using a coprecipitation method and characterized using X-ray diffraction (XRD), absorption spectroscopy, surface-enhanced Raman Spectroscopy (SERS), X-ray photoelectron spectroscopy (XPS), and superconducting quantum interference device (SQUID). The effect of Gd-doping on properties of CeO2 is discussed along with defects and oxygen vacancies generation. The XRD confirms the incorporation of Gd3+ at the Ce3+/Ce4+ site by keeping the crystal structure same. The average particle size from transmission electron microscopy (TEM) images is in the range of 5–7 nm. The XPS spectra of Ce 3d, O 1s, and Gd 4d exhibits the formation of oxygen vacancies to maintain the charge neutrality when Ce4+ changes to Ce3+. The gradual increase in hydrogen production is observed with increasing Gd concentration. The observed results are in good correlation with the characterization results and a mechanism of water splitting is proposed on the basis of analyses. The absorption spectra reveal optical band gap (2.5–2.7 eV) of samples, showing band gap narrowing leads to desired optical absorbance and photoactivity of NPs.

    关键词: water splitting,hydrogen generation,SERS,XPS

    更新于2025-09-23 15:23:52

  • ZnxCd1-xSe nanoparticles decorated ordered mesoporous ZnO inverse opal with binder-free heterojunction interfaces for highly efficient photoelectrochemical water splitting

    摘要: Well-defined porous heteronanostructures with broad light absorption range and efficient charge transfer are the key challenges towards developing efficient photoanodes for photoelectrochemical (PEC) water splitting. Herein, we reported a facile template and continuous ion exchange method to fabricate three-dimensional ordered mesoporous (3DOM) ZnO/ZnxCd1-xSe inverse opal with binder-free heterojunction interfaces on F-doped SnO2 glass. The heteroepitaxial growth of ZnxCd1-xSe shell layer on ZnO inverse opal skeleton surface provided favorable type-II band alignment, low interfacial resistance, and high visible light absorption. As expected, the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal achieved a significant saturated photocurrent density of 24.76 mA cm-2 at 1.23 V versus a reversible hydrogen electrode (RHE) in 0.25 M Na2S and 0.35 M Na2SO3 aqueous solution under AM 1.5 G simulated solar light irradiation (100 mW cm-2), which is 25 times higher than that of the pristine ZnO (0.99 mA cm-2 at 1.23 V versus RHE) photoanode. The maximum photoconversion efficiency reached 10.64% for the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal at an applied potential of 0.52 V versus RHE, an about 22.63 times increase relative to that of the pristine ZnO inverse opal (0.47% at 0.61 V versus RHE). In addition, the photostability of the optimized 3DOM ZnO/ZnxCd1-xSe inverse opal photoanode was also greatly improved in the electrolyte solution, 82.6% initial value was maintained even after 3000 s continuous light illumination without any protective coating layer. Such prominent PEC performances of the as-prepared 3DOM ZnO/ZnxCd1-xSe inverse opal can be ascribed to the improved visible light harvesting and enhanced charge separation/collection efficiency. This work provides a fundamental insight to design the efficient photoanode for high performance water splitting.

    关键词: Heteroepitaxial growth,ZnO/ZnxCd1-xSe,Inverse opal,Photoelectrochemical water splitting,Heterojunction interface

    更新于2025-09-23 15:23:52

  • Ultrathin 2D type-II p-n heterojunctions La2Ti2O7/In2S3 with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination

    摘要: In this work, novel 2D type-II p-n heterojunctions La2Ti2O7/In2S3 have been fabricated. The heterojunctions exhibit much improved photocatalytic activity over individual moieties and their physical mixtures in which 18-fold increment in hydrogen production has been achieved under visible light illumination (λ ≥ 400 nm). Their superior activities stem from intimate face-to-face contact between La2Ti2O7 and In2S3 in the heterojunctions which guarantee facile charge interchange. Photoelectrochemical analysis suggests that efficient charge separations occur at the interfaces of the heterojunctions and contributes to a prolonged charge lifetime as well as the much enhanced photocatalytic activities. Such a simple strategy by fabricating ultrathin type-II p-n heterojunctions also warrant promising applications in other areas such as optoelectronics, sensors etc. whereby efficient charge separations are needed.

    关键词: charge separations,water splitting,type-II heterojunction,2D materials,photocatalyst

    更新于2025-09-23 15:23:52