- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- composite electrode
- silver nanowire
- reduced graphene oxide
- zinc oxide
- Optoelectronic Information Materials and Devices
- China Jiliang University
- Guangdong Poly-Optoelectronics Co.
-
Synthesis of ZnxCd1-xSe@ZnO Hollow Spheres in Different Sizes for Quantum Dots Sensitized Solar Cells Application
摘要: ZnxCd1-xSe@ZnO hollow spheres (HS) were successfully fabricated for application in quantum dot sensitized solar cells (QDSSCs) based on ZnO HS through the ion-exchange process. The sizes of the ZnxCd1-xSe@ZnO HS could be tuned from ~300 nm to ~800 nm using ZnO HS pre-synthesized by different sizes of carbonaceous spheres as templates. The photovoltaic performance of QDSSCs, especially the short-circuit current density (Jsc), experienced an obvious change when different sizes of ZnxCd1-xSe@ZnO HS are employed. The ZnxCd1-xSe@ZnO HS with an average size distribution of ~500 nm presented a better performance than the QDSSCs based on other sizes of ZnxCd1-xSe@ZnO HS. When using the mixture of ZnxCd1-xSe@ZnO HS with different sizes, the power conversion ef?ciency can be further improved. The size effect of the hollow spheres, light scattering, and composition gradient structure ZnxCd1-xSe@ZnO HS are responsible for the enhancement of the photovoltaic performance.
关键词: zinc oxide,alloyed quantum dots,sensitized solar cells,hollow spheres
更新于2025-11-14 17:04:02
-
Design of Mn-doped CdxZn1-xSe@ZnO triple-shelled hollow microspheres for quantum dots sensitized solar cells with improved photovoltaic performance
摘要: Mn-CdxZn1-xSe@ZnO multi-shelled (including single-shelled, double-shelled, and triple-shelled) hollow microspheres (HMS) were successfully synthesized for application in quantum dots sensitized solar cell (QDSSC). The influence of shell numbers on photovoltaic performance of QDSSC were investigated. The results showed that larger surface area, repeated light reflection and reinforced light scattering can be achieved with triple-shelled HMS, which can improve light harvesting efficiency. Furthermore, midgap state created by Mn-doping in CdxZn1-xSe will facilitate electrons injection and collection from excited CdxZn1-xSe quantum dots (QDs) to ZnO. The multi-shelled effects and Mn-doping finally improve the short-circuit current (Jsc) of Mn-CdxZn1-xSe@ZnO tripled-shelled HMS solar cell to 20.21 mA cm?2, leading to the power conversion efficiency significantly enhanced to 3.39%.
关键词: Zinc oxide,Solar cells,Quantum dots,Hollow microspheres
更新于2025-11-14 17:04:02
-
Ellipsometric study on optical properties of hydrogen plasma-treated aluminum-doped ZnO thin film
摘要: Aluminum-doped zinc oxide (AZO) thin films were prepared by radio frequency (RF) sputtering at room temperature, and then post-treated by hydrogen (H2) plasma at different durations. After H2 plasma treatment under the condition of 10 W, 200 °C and 3.0 Hours, the resistivity showed a dramatically decrease from 1.6 Ω cm to 3.4 × 10?3 Ω cm, while the transmittance at the wavelength of 550 nm was improved from 90.5% to 96.0%. The optical constants of H2 plasma-treated AZO thin films were detailed characterized by a varied angle spectroscopic ellipsometer. The results show that the refractive index n decreases in the entire measured wavelength range of 350–1100 nm, while the extinction coefficient k decreases in the short wavelength range and changes negligibly at the long wavelength range. These results can provide guidelines for the design and optimization of AZO thin film-based optoelectronic applications.
关键词: Resistivity,Spectroscopic ellipsometer,Transmittance,Optical constants,Hydrogen plasma treatment,Aluminum-doped zinc oxide
更新于2025-11-14 17:03:37
-
Enzyme-free “on-off-on” photoelectrochemical biosensor based on cascaded quadratic amplification strategy for miRNA 141 detection
摘要: MicroRNAs (miRNAs) assay is of great significance for early diagnosis of diseases, so an enzyme-free “on-off-on” PEC biosensor has been developed for sensitive miRNA 141 determination. Manganese-doped cadmium sulfide coupled with zinc sulfide quantum dots (Mn:CdS@ZnS QDs) and manganese porphyrin (MnPP) have been used as photoelectric material and photosensitizer, respectively. And a high photocurrent of approximately 70.0 μA has been obtained. Cascaded quadratic amplification strategy has been applied in the system. Mn:CdS@ZnS QDs was characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). Photoelectrochemical and electrochemical technologies were used to monitor the fabrication process of the biosensor. The sensing platform exhibits recommendable stability and good selectivity, miRNA 141 can be accurately quantified with a linear range of 1.00 × 10-14 to 1.00 × 10-8 mol·L-1 and the detection limit of 3.30 fmol·L-1. This method provides promising potential to explore sensitive detection models for various biological molecules.
关键词: Hybridization chain reaction,Catalytic hairpin assembly,Manganese-doped cadmium sulfide coupled with zinc sulfide quantum dots,MiRNA 141,Photoelectrochemistry,On-off-on
更新于2025-11-14 17:03:37
-
H2 Gas Sensor Based on Pd/ZnO Nanostructures Deposited on Tapered Optical Fiber
摘要: A novel H2 sensor using tapered optical fiber coated with Pd/ZnO nanostructures have been developed. The ZnO nanostructures was synthesized and deposited onto tapered optical fiber via chemical bath deposition (CBD) method. The ZnO was characterized by FESEM, XRD and EDX to confirm the material properties. It was discovered that the sensor is sensitive towards different concentrations of H2 in synthetic air at 180oC of operating temperature. By varying the deposition time of ZnO coating, different thickness of ZnO layer can be obtained. It was observed that with 280 nm thickness, the maximum absorbance response can be achieved. Further investigation with sensor sample of as-prepared and annealed was carried out to study its sensing performance towards H2. The absorbance response of 280 nm thickness of annealed Pd/ZnO has increased 64% as compared to as-prepared Pd/ZnO upon 1% H2 exposure in the synthetic air when measured in the visible to near infra-red optical wavelength. It can be concluded that the Pd/ZnO optical fiber sensor with thickness around 280 nm provided better sensitivity in sensing H2 at 180oC as compared to other thicknesses investigated.
关键词: Optical sensors,zinc oxide,sensing material
更新于2025-11-14 15:30:11
-
Syntheses, crystal structures, and photocatalytic properties of two zinc(II) coordination polymers based on dicarboxylates and flexible bis(benzimidazole) ligands
摘要: Two new ternary zinc(II) coordination polymers (CPs), catena-(μ2-phthalato)-(μ2-1,1'-hexane-1,6-diylbis(2-methyl-1H-benzimidazole))-zinc (CP 1) and catena-(μ2-phenylene-1,4-diacetato)-(μ2-1,1'-hexane-1,6-diylbis(1H-benzimidazole))-zinc (CP 2) were synthesized via hydrothermal process. CP 1 and CP 2 are named as [Zn(L1)(PA)]n and [Zn(L2)(PDA)]n (L1 = 1,1'-hexane-1,6-diylbis(2-methyl-1H-benzimidazole), L2 = 1,1'-hexane-1,6-diylbis(1H-benzimidazole), H2PA = phthalic acid, H2PDA = 1,4-phenylenediacetic acid)), respectively. Both CPs were characterized by elemental analysis, infrared spectroscopy, single crystal X-ray diffraction analysis. CP 1 possesses a 4-connected 66-dia network, CP 2 displays a 2D hcb layer with point symbol {63}. Luminescence, UV-vis diffuse reflection spectra, and photocatalytic properties of two CPs for the degradation of the methylene blue (MB) dye were investigated. The mechanism of photocatalytic degradation of MB was also suggested.
关键词: Zinc(II),Crystal structure,Bis(benzimidazole),Photocatalytic property,Coordination polymer
更新于2025-11-14 15:28:36
-
{Zn <sub/>6</sub> } Cluster Based Metal–Organic Framework with Enhanced Room-Temperature Phosphorescence and Optoelectronic Performances
摘要: Molecule-based solid-state materials with long lifetimes could enable longer migration distances for excitons, which are beneficial for vast applications in optoelectronic field. Herein, we report a hexanuclear zinc cluster based MOF exhibits highly enhanced phosphorescence about 2 orders of magnitude in comparison with the pristine phosphor ligand. The combination of both experimental and computational results suggest that the {Zn6} cluster is very important for adjusting molecular conformations, packing arrangement, and photophysical properties of the organic phosphor ligands within the MOF matrix. Optoelectronic measurements reveal that the MOF-modified electrode is catalytically active to hydrogen evolution under light irradiation in neutral solution. Thus, our study provide an effective way to achieve low-cost metal-based phosphorescence MOF, expanding its further optoelectronic applications.
关键词: optoelectronic performances,metal?organic framework,hexanuclear zinc cluster,room-temperature phosphorescence
更新于2025-11-14 15:23:50
-
Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials
摘要: Three Zn(II) complexes of a new organic compound [(E)-4-methyl-N1-((E)-4-methyl-6-(p-tolylimino) cyclohex-3-en-1-ylidene)-N2-(p-tolyl) benzene-1, 2-diamine] (HMBD) were prepared and characterized by various techniques, including Fourier transform infrared (FTIR), UV–visible measurements, 1H-NMR, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The data revealed that the HMBD ligand has an ONS tridentate-forming structure, while the complex of HMBD with zinc metal has a distorted octahedral structure, providing sp3d2 hybridization type. The geometry, HOMO, LUMO, polarizability, and other energetic parameters were evaluated by density functional theory (DFT) on Materials Studio package. Optical band gap (Eg) was estimated by DFT theory and optical properties for [Zn(MBD)(Cl)(H2O)2].2H2O (1), [Zn(MBD)](NO3)2H2O].2H2O (2), and [Zn(MBD)(CH3COO)(H2O)].3H2O (3) thin films as well, revealing that [Zn(MBD)(CH3COO)(H2O)].3H2O (3) thin film has the smallest energy gap and can be considered a highly efficient photovoltaic material. The resulting band gap energy values from both methods were found to be close to each other. Thin films of the ligand and zinc complexes were successfully fabricated by spin coating method. The optical constants, refractive index (n), and the absorption index (k) over the spectral range of the thin films were determined.
关键词: Optical properties,Semiconductor materials,Density functional theory,Thin film,Zinc-quinonoid complexes
更新于2025-11-14 15:19:41
-
Structural, morphological and opticalproperties of spray-formed silver-doped zinc sulphide thin films
摘要: The study focused on the qualities of spray-formed Silver-doped Zinc sulphide (ZnS) thin films sprayed on soda-lime glass (slg) substrate. Silver-doped and undoped ZnS thin films with 0%, 1%, 3% and 5% Silver concentrations were deposited. The qualities of the synthesized films were investigated using x-ray diffractometry, scanning electron microscopy, Fourier transforms infrared (FTIR) spectrometry, UV-VIS spectrophotometry, Raman spectrometry and contact angle techniques. The x-ray diffraction data identified cubic structures for the thin films. Scanning electron microscopy shows the presence of agglomerates of nanoparticles and pores in the thin films. The thin films’ crystallite size ranges between 3.107 and 4.103 nm. FTIR revealed the chemical bonds in the film. The transmittance of the thin films is between 42.35 and 81.86% at 550 nm, the energy gap is observed within a range of 3.11 and 3.60 eV while the indices of refraction are in the range of 1.52 to 3.81 at 550 nm wavelength. Photoluminescence result shows Sulphur vacancies. A hydrophilic surface feature of the film was revealed by the contact angle measurement.
关键词: silver,Thin film,zinc sulphide,Raman spectrometry
更新于2025-11-14 15:16:37
-
Preparation and immobilization of zinc sulfide (ZnS) nanoparticles on polyvinylidene fluoride pellets for photocatalytic degradation of methylene blue in wastewater
摘要: ZnS nanoparticles with 90 nm diameter were synthesized by low-temperature method and immobilized onto the surface of polyvinylidene fluoride (PVDF) pellets prepared by phase inversion method. Results by FTIR and X-ray photoelectron spectroscopy revealed that the ZnS nanoparticles were immobilized tightly on the PVDF surface without their release and losing photocatalytic activity. The UV-absorption spectra showed that the PVDF matrix had no adverse effect on the optical properties of ZnS nanoparticles. Due to large size (5 mm) and excellent mechanical stability, the PVDF-ZnS pellets could be easily dispersed in the photocatalytic reactor treating methylene blue solution. The removal efficiency of the methylene blue with the PVDF-ZnS pellets was higher (more than 95%) than that observed by the control PVDF pellets or ZnS nanoparticles tested. No change in the removal efficiency was observed as the PVDF-ZnS pellets were reused by performing photocatalytic tests at the same experimental conditions repeatedly.
关键词: Reusability,Polymer carrier,Zinc sulfide,Immobilization,Phase inversion,Photocatalytic degradation
更新于2025-11-14 15:14:40