修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

204 条数据
?? 中文(中国)
  • Synthesis and Characterization of Graphene Oxide/Zinc Oxide (GO/ZnO) Nanocomposite and Its Utilization for Photocatalytic Degradation of Basic Fuchsin Dye

    摘要: In this study, graphene oxide/zinc oxide (GO/ZnO) nanocomposite was prepared by the decoration of expanded and chemically oxidized graphite oxide nanosheets with zinc oxide (ZnO) nanoparticles synthesized via two-step sol-gel deposition method and used as an effective photocatalyst for degradation of basic fuchsin (BF) dye. Structural properties of GO/ZnO nanocomposite were characterized with X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) methods, and Brunauer-Emmett-Teller (BET) surface area measurement. It was found that the GO/ZnO nanocomposite formed a two-dimensional (2D) structure having a composition of 0.54GO/0.46ZnO (w/w) and average ZnO particle size of 25–30 nm. The band gap of ZnO nanoparticles onto GO nanosheets was found to be 3.25 eV while that of bulk ZnO nanoparticles was determined as 3.70 eV. Photocatalytic degradation works were performed into a UV-chamber by following the concentration of BF dye. Degradation reaction was modeled with the Langmuir-Hinshelwood pseudo first-order kinetic model. GO/ZnO nanocomposite increased the apparent reaction rate constant (k) about three times compared to bulk ZnO nanoparticles under UV light.

    关键词: Nanocomposite,Photocatalyst,Graphene oxide,Zinc oxide

    更新于2025-09-23 15:23:52

  • High Breakdown Strength Schottky Diodes Made from Electrodeposited ZnO for Power Electronics Applications

    摘要: The synthesis of ZnO films by optimized electrodeposition led to the achievement of a critical electric field of 800 kV/cm. This value, which is 2 to 3 times higher than in monocrystalline silicon, was derived from a vertical Schottky diode application of columnar-structured ZnO films electrodeposited on platinum. The device exhibited a free carrier concentration of 2.5 × 10^15 cm^-3, a rectification ratio of 3 × 10^8 and an ideality factor of 1.10, a value uncommonly obtained in solution-processed ZnO. High breakdown strength and high thickness capability make this environment-friendly process a serious option for power electronics and energy-harvesting.

    关键词: breakdown voltage,electrodeposition,zinc oxide,critical electric field,solution-processed,Schottky diode,power diode,ideality factor

    更新于2025-09-23 15:23:52

  • Subchronic intravenous toxicity study of biofunctional ZnO and its application as a fluorescence probe for cell-specific targeting

    摘要: Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early cancer is a great challenge. Herein, we choose the visible‐light emitting zinc oxide non–core/shell type nanoparticle (NP) fluorophores (ZHIE) as prototypical materials. We have reported on these materials previously. The results showed that the ZHIE NPs exhibited good water solubility and good biocompatibility. This study was conducted to investigate the toxicity of ZHIE NPs when intravenously administered to mice repeatedly at the dose required for successful tumor imaging in vivo. Anti‐macrophage‐1 antigen (Mac1), a macrophage differentiation antigen, antibody‐conjugated ZHIE NPs successfully realized targeted imaging of murine macrophage cell line Raw264.7 cells. In conclusion, ZHIE NPs are not toxic in vivo and antibody‐conjugated ZHIE NPs have great potential in applications, such as single cell labeling.

    关键词: subchronic toxicity,zinc oxide (ZnO) nanoparticles,fluorescence probe

    更新于2025-09-23 15:23:52

  • Sol–Gel Spin-Coating Followed by Solvothermal Synthesis of Nanorods-Based ZnO Thin Films: Microstructural, Optical, and Gas Sensing Properties

    摘要: Zinc oxide thin films with nanorod morphology were investigated for microstructural and optical properties as well as their performance as a liquid petroleum gas sensing material. A two-step synthesis procedure consisting of sol–gel spin-coating and solvothermal methods was employed where several factors such as rational utilization of metal precursors, solvent, stabilizing, and structure directing agents, a repetitive drying-coating process, as well as post-thermal annealing were found influential to obtain qualified nanorods and a final homogeneous thin film. Compositional and optical investigations were pursued to characterize features, namely morphology, poly crystallinity, porous structure, nanocrystallite size, lattice oriented growth, textural atomic ratio, lattice purity and transparency, phonon and exciton transitions, as well as the formed structural defects via field-emission scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray, UV–Vis spectroscopy, Raman, and photoluminescence techniques. The as-prepared thin film was then used as an active LPG sensing material via a home-made gas sensor where the control sensing parameters were chamber testing temperature and gas concentration. Results showed a quantitative response of 92.7% as sensor sensitivity at an operation temperature of 250°C and a LPG concentration of 800 ppm in addition to fast response and recovery times of 44.1 s and 218.7 s, respectively.

    关键词: Zinc oxide nanorods,thin film,optical characteristics,gas sensing,microstructural properties,liquid petroleum gas

    更新于2025-09-23 15:23:52

  • Length-Dependent Electronic Transport Properties of the ZnO Nanorod

    摘要: The two-probe device of nanorod-coupled gold electrodes is constructed based on the triangular zinc oxide (ZnO) nanorod. The length-dependent electronic transport properties of the ZnO nanorod was studied by density functional theory (DFT) with the non-equilibrium Green’s function (NEGF). Our results show that the current of devices decreases with increasing length of the ZnO nanorod at the same bias voltage. Metal-like behavior for the short nanorod was observed under small bias voltage due to the interface state between gold and the ZnO nanorod. However, the influence of the interface on the device was negligible under the condition that the length of the ZnO nanorod increases. Moreover, the rectification behavior was observed for the longer ZnO nanorod, which was analyzed from the transmission spectra and molecular-projected self-consistent Hamiltonian (MPSH) states. Our results indicate that the ZnO nanorod would have potential applications in electronic-integrated devices.

    关键词: current–voltage (I–V) curves,molecular-projected self-consistent Hamiltonian (MPSH),transport properties,zinc oxide (ZnO) nanorod,transmission spectrum

    更新于2025-09-23 15:23:52

  • Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties

    摘要: In this paper, we present for the first time the obtaining and characterization of new antibacterial and biocompatible nano-ZnO–bacterial cellulose (BC) material with controlled interfaces for studying in vitro microorganisms (Escherichia Coli (ATCC 8737), B. subtilis Spizizenii Nakamura (ATCC 6633), Candida albicans (ATCC10231)) and mammalian cells (human dermal fibroblast cells) response. The use of BC based material with controlled characteristics in terms of quantity and distribution of ZnO onto BC membrane (with 2D and 3D fibers arrangement) is directly correlated with the surface chemical and topographical properties, the method of preparation, and also with the type of cells implied for the specific application within the bioengineering fields. In our study, the uniform distribution and the control on the quantity of ZnO nanoparticles onto 3D BC were obtained using matrix assisted pulsed laser evaporation (MAPLE) method. The influence on particle distribution onto 3D bio cellulose were investigated based on two types of solvents (water and chloroform) involved in target preparation within MAPLE deposition. The attachment of the nanoparticles to the bacterial cellulose surface and fibrils was demonstrated by SEM and FT-IR studies. The BC-ZnO showed both resistance to bacteria-sticking and non-cytotoxic effect on the human dermal fibroblasts cells at a mass distribution onto surface of 1.68 mg ZnO NPS/mm2. These results represent a good premise in terms of tailoring BC substrates with ZnO particles that could determine or enhance both the biocompatibility and antibacterial properties of BC-composite materials.

    关键词: Antibacterial effect,Zinc oxide nanoparticles,MAPLE deposition technique,Bacterial cellulose,Biocompatibility

    更新于2025-09-23 15:23:52

  • A novel non-enzymatic zinc oxide thin film based electrochemical recyclable strip with device interface for quantitative detection of catechol in water

    摘要: Catechol, one of the major effluents released by various chemical and metal processing industries, causes severe pollution of groundwater. Monitoring of catechol in water using cost-effective, handheld sensor is demanding for the safety of the environment. In this work, non-enzymatic zinc oxide thin film based electrochemical strip sensor is developed on conducting glass substrate for detection of catechol. The preparation of strip without employing standard Pt or Ag/AgCl electrodes and simply depositing ZnO through wet chemical process represents a cost-effective innovative technique. The ZnO thin film is characterized using field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and grazing incidence X-ray diffractrometer (GIXRD). Catechol is electrochemically detected by means of cyclic voltammetry and amperometry. A prominent redox peak of the developed strip attributed to the detection of catechol is observed at -0.26 V in cyclic voltammetry. The strip is integrated with readout meter and an algorithm is built based on the experimentally observed linear variation of amperometric current with catechol concentration. The quantitative detection performance is demonstrated by testing 0.1-12 ppm catechol solutions.

    关键词: Zinc oxide,Catechol,Electrochemical strip sensor,Amperometry,Cyclic voltammetry

    更新于2025-09-23 15:23:52

  • 24.5: Back-Channel-Etched a-IGZO TFTs with TiO <sub/>2</sub> :Nb Protective Layer

    摘要: A back-channel-etched (BCE) process for the fabrication of a-IGZO TFTs is demonstrated, in which conductive TiO2:Nb (TNO) thin film is used to serve as protective layer for the a-IGZO active layer. TNO film could excellently protect a-IGZO due to its ultra-small surface roughness. With treatment by N2O plasma + 200°C annealing, the conductive TNO can be converted into an insulator to serve as an in situ passivation layer. Besides, the TNO in the source–drain (S-D) region remain conductive due to the protection of S-D electrodes, which could be proved by the XPS results. Compare with the conventional device without TNO protective layer, the S-D parasitic resistance (RSD) of devices with 1 nm and 5 nm TNO is significantly reduced. The positive bias stress stability is improved as well for the devices with TNO in situ passivation layer.

    关键词: amorphous indium gallium zinc oxide (a-IGZO),Nb doped TiO2 (TNO),thin film transistors (TFTs),back-channel-etched (BCE) process

    更新于2025-09-23 15:23:52

  • Systematic investigations on the effect of prolong UV illumination on optoelectronic properties of ZnO honeycomb nanostructures

    摘要: Herein, the effect of prolong UV illumination over ZnO optoelectronic characteristics has been investigated. The photoluminescence analysis has shown significant enhancement in deep level emission (DLE) after sample being exposed to UV radiations. The formation of photo-induced oxygen vacancies (VO) over the ZnO surface was found to be responsible for such noteworthy enhancement in DLE. The observed phenomenon was further utilized for controlled incorporation of VO in ZnO via UV illumination, towards obtaining optimal device performance. The UV treated photo-detector has shown significantly high photo-responsivity and photo-sensitivity in the deep UV region.

    关键词: Zinc oxide,Honeycomb structure,Deep UV photodetector,XRD,Lattice defects

    更新于2025-09-23 15:23:52

  • Optoelectronic Properties of Zinc Oxide: A First-Principles Investigation Using the Tran-Blaha Modified Becke-Johnson Potential

    摘要: In this work, density functional theory (DFT) is used to investigate the influence of semi-local exchange and correlation effects on the electronic and optical properties of zinc oxide. It is found that the inclusion of such effects using the Tran–Blaha modified Becke–Johnson potential yields an excellent description of the electronic structure of this material giving an energy band gap which is systematically larger than the one obtained with standard local functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced. We also calculated the dielectric functions of ZnO and find a violet shift to the absorption edge which is in good agreement with experimental results.

    关键词: zinc oxide,electronic structure,optical properties

    更新于2025-09-23 15:23:52