- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Effect of annealing temperature of MoO3 layer in MoO3/Au/MoO3 (MAM) coated PbS QDs sensitized ZnO nanorods/FTO glass solar cell
摘要: This research reports fabrication of MoO3/Au/MoO3 (MAM) coated PbS sensitized quantum dot solar cell. ZnO nanorod grown FTO glass substrates were sensitized by PbS quantum dots (PbS QDs/ZnO nanorods/FTO Glass), followed by (MoO3/Au/MoO3) coating. Hydrothermal process was used to grow ZnO nanorods, followed by the deposition of PbS QDs using Successive Ionic Layer Adsorption and Reaction (SILAR). Finally, (MoO3/Au/MoO3) layers were deposited for the back contact. Spin coating was used to deposit MoO3 layers while middle layer of Au was deposited by sputter coating. Three such devices were fabricated with three di?erent annealing temperatures i.e. 100 °C, 150 °C and 200 °C for ?rst MoO3 layer. Scanning Electron Microscopy (SEM) was used for surface morphology of the devices; Energy Dispersive Spectroscopy Analysis (EDS) and X-Ray Di?raction (XRD) techniques were used for elemental and structural analysis, Optical properties of the devices were determined using UV–Visible analysis. Power conversion e?ciency (PCE) of all three devices was obtained to observe devices performance. Improved PCE of 4.617% was obtained by the device with the thermal treatment of 150 °C.
关键词: Quantum dots,ZnO nanorods,MoO3 thin ?lm,PbS quantum dot sensitized Solar Cell
更新于2025-09-23 15:19:57
-
Interaction of ZnO nanorods with plasmonic metal nanoparticles and semiconductor quantum dots
摘要: We model the enhancement of near band edge emission from ZnO nanorods using plasmonic metal nanoparticles and compare it with emission enhancement from ZnO with semiconducting quantum dots. Selected CdSe quantum dots with absorption energies close to those of Ag and Au nanoparticles are chosen to construct model systems with ZnO to comprehend the role of ZnO’s intrinsic defects and plasmonic excitation in realizing the spectrally selective luminescence enhancement. Excitation wavelength dependent photoluminescence spectra along with theoretical models quantifying the related transitions and plasmonic absorption reveal that a complex mechanism of charge transfer between the ZnO nanorods and metal nanoparticles or quantum dots is essential along with an optimal energy band alignment for realizing emission enhancement. The theoretical model presented also provides a direct method of quantifying the relative transition rate constants associated with various electronic transitions in ZnO and their change upon the incorporation of plasmonic nanoparticles. The results indicate that, while the presence of deep level defect states may facilitate the essential charge transfer process between ZnO and the plasmonic nanoparticles, their presence alone does not guarantee UV emission enhancement and strong plasmonic coupling between the two systems. The results offer clues to designing novel multicomponent systems with coupled plasmonic and charge transfer effects for applications in charge localization, energy harvesting, and luminescence enhancement, especially in electrically triggered nanophotonic applications.
关键词: ZnO nanorods,plasmonic metal nanoparticles,semiconductor quantum dots,luminescence enhancement,charge transfer
更新于2025-09-23 15:19:57
-
Investigation into effect of coupled resonance phenomenon towards sensitivity enhancement of SAW conductivity sensors integrated with ZnO nanorods
摘要: In this work, FEM simulation was used to investigate the sensitivity of a one-port surface acoustic wave (SAW) resonator sensor to changes in electrical conductivity of the sensing medium composed of ZnO nanorods offering elastic loading on the surface of the resonator. A system of coupled resonators was formed when the height of the ZnO nanorods attached to the surface of the resonator was adjusted such that the resonant frequency of the nanorod approached the original resonant frequency of the SAW resonator. It was observed that the use of ZnO nanorods of resonant dimensions as sensing medium could enhance the sensitivity of the composite SAW sensor to changes in electrical conductivity of the sensing medium by up to 79 times. The comparatively higher sensitivity of the SAW conductivity sensor utilizing ZnO nanorods at resonant dimensions as sensing medium was attributed to the fact that the system of coupled resonators thus formed operates at a state of high sensitivity to changes induced in piezoelectric stiffening of the substrate during SAW propagation. The observations from FEM simulation conducted in the present work suggests strong prospects for the use of coupled resonance phenomenon at nanoscale for enhancing the sensitivity of conductivity-based SAW gas sensors and UV detectors employing 1-D ZnO nanostructures as sensing medium.
关键词: ZnO nanorods,sensitivity enhancement,SAW resonator,coupled resonance,FEM simulation
更新于2025-09-23 15:19:57
-
Fabrication and TCAD validation of ambient air-processed ZnO NRs/CH3NH3PbI3/spiro-OMeTAD solar cells
摘要: This paper reports the fabrication, characterization and simulation of hybrid perovskite solar cells (PSCs) in ambient condition. The proposed PSC structures use a CH3NH3PbI3 hybrid perovskite based active layer sandwiched between a ZnO nanorods (NRs) electron transport layer (ETL) and a spiro-OMeTAD (undoped and doped) hole transport layer (HTL). The ZnO NRs are grown using low-cost solvothermal process at relatively low temperature. The performance of fabricated PSCs are analyzed for both the undoped and doped (with TBP and LiTFSI) spiro-OMeTAD based HTLs. All the solar parameters namely, short circuit current density (JSC), open circuit voltage (VOC), fill factor (FF), power conversion efficiency (PCE) and external quantum efficiency (EQE) are calculated from experimentally measured current density versus voltage (J-V) and wavelength transient characteristics in ambient condition. The maximum PCE of 10.18% is obtained for the doped HTL whereas 9.51% for undoped HTL. The improved performance due to HTL doping is attributed to the enhanced charge transportation of the HTL. The experimental results obtained from the fabricated PSCs are also compared with the SetFosTM TCAD simulation data using drift-diffusion model. The simulated results are observed to be well matched to the experimental data.
关键词: Perovskite,ZnO nanorods,solvothermal method,power conversion efficiency,solar cells
更新于2025-09-23 15:19:57
-
[IEEE 2018 International Semiconductor Conference (CAS) - Sinaia, Romania (2018.10.10-2018.10.12)] 2018 International Semiconductor Conference (CAS) - Substrate Effect on the Morphology and Optical Properties of ZnO Nanorods Layers Grown by Microwave-Assisted Hydrothermal Method
摘要: The substrate effect on the morphology and optical properties of zinc oxide nanorods synthesized by microwave-assisted hydrothermal method have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-VIS-NIR optical absorption and reflecting spectroscopy. The band gap energy of the investigated samples was calculated from absorbance spectra in the (200-1100) nm wavelengths range.
关键词: optical properties,ZnO nanorods,band gap energy,microwave-assisted hydrothermal synthesis,morphology
更新于2025-09-23 15:19:57
-
Rectifying Behaviour and Photocatalytic Activity in ZnO Nanorods Array/Ag/CuSe Heterostructure
摘要: Ag incorporated vertically aligned ZnO nanorods array/CuSe thin film (ZnO NRs/CuSe TF) have been fabricated via a solution route, thermal evaporation and magnetron sputtering process. Ternary ZnO nanorods/Ag/CuSe heterostructure was studied by X-ray diffractometry, field emission-scanning electron microscopy/energy dispersive X ray spectroscopy, current–voltage measurement and a UV–Vis–near IR spectrophotometer. The photocatalytic performance was estimated by the degradation of Rhodamine B solution under UV–Vis light irradiation. The photocatalytic efficiency of the ZnO NRs/Ag/CuSe heterostructure is higher than that of ZnO NRs/Ag and ZnO NRs/CuSe counterparts due to the robust effects of the three functional components coupling. The localized surface plasmon resonance and two Schottky junctions (e.g. Ag/ZnO and Ag/CuSe) motivates photogenerated electron–hole separation and transfer. This work presents an artificial manipulated system to enhance light harvesting, efficient charge separation and transfer, and low recombination rate in solar energy conversion.
关键词: Photocatalytic activity,Localized surface plasmon resonance (LSPR),Charge separation,ZnO nanorods array/Ag/CuSe heterostructure
更新于2025-09-19 17:15:36
-
Hybrid TiO2-ZnO Nanomaterials Prepared Using Laser Ablation in Liquid
摘要: Hybrids of semiconductor nanomaterials often demonstrate properties that are superior to those of their components. In this study, we prepared hybrid nanomaterials of TiO2 and ZnO, which are among the most actively studied semiconductors, by means of millisecond-pulsed laser and analyzed how their morphology, particle size, and surface composition depend on preparation conditions. A series of nanomaterials were obtained via sequentially ablating Zn and Ti metal plates (in di?erent sequences) in water, while laser pulses of lower (2.0 J/pulse) and higher (5.0 J/pulse) energy were applied. The properties of laser-produced hybrid TiO2-ZnO nanomaterials were shown to be governed by experimental conditions such as laser pulse width, pulse peak power, and reaction media (either pure water or colloid with nanoparticles). The morphology revealed nanospheres of TiO2 that decorate nanorods of ZnO or ?ower-like aggregates of zinc oxide. Intriguingly, after extended ablation time, titania was found to be self-doped with Ti3+ ions, and the contribution of lower oxidation states of titanium could be controlled by the applied laser pulse energy. The physicochemical characteristics of hybrid nanomaterials were compared with pure ZnO and TiO2 prepared under the same laser conditions.
关键词: ZnO nanorods,TiO2 nanospheres,Ti3+ and Ti2+ doped titania,hybrids TiO2-ZnO,XPS
更新于2025-09-19 17:13:59
-
Orientation modulation of ZnO nanorods on charge transfer performance enhancement for Sb2S3 quantum dot sensitized solar cells
摘要: ZnO nanorods nanorod films are prepared by electrochemical deposition process, which are employed as the photo-electrodes for the Sb2S3 quantum dot sensitized solar cells. The orientation of ZnO NRs nanorods (NRs) is modulated by different heating time. The changing on orientation of ZnO NRs has no influences on UV-Vis absorption spectra. And the photoluminescence spectra have indicated that the random orientation ZnO NRs have the better charge separation property. Due to the much more transfer paths from the random orientation of ZnO NRs, the Sb2S3 quantum dot sensitized ZnO NRs solar cells by heating time of 20 min has exhibited an excellent charge transfer property, which can obtain much higher current density of the solar cells, achieving a photovoltaic power conversion efficiency of 2.43%.
关键词: ZnO nanorods films,Sb2S3 quantum dot sensitized solar cells,orientation modulation,charge transfer performance enhancement
更新于2025-09-19 17:13:59
-
Design and Analysis of High Efficiency Perovskite Solar Cell with ZnO Nanorods and Plasmonic Nanoparticles
摘要: Recently, the utilization of hybrid organic-inorganic perovskite has become prevalent in solar cell applications due to its promising optical properties. In this study, a perovskite solar cell (PSC) based on ZnO nanorods (NRs) as an electron transport layer (ETL) was numerically simulated and the plasmonic effects of gold nanoparticles (Au NPs) were surveyed beside the previously desirable result of using ZnO nanorod observed in 3rd generation organic photovoltaic devices. Since the unique properties of plasmonic structures, particularly the ability to guide and trap the light at nanometer dimensions, would cause a substantial increase in light absorption, improved device performance can be expected. In this article, we showed that a model of perovskite solar cell comprised of FTO/ZnO/ZnO NR/CH3NH3PbI3/spiro-MeOTAD/Au yielded promising results after incorporating Au NPs. While utilizing the benefits of ZnO nanorod ETL is a common method to achieve high-performance halide PSCs, we revealed that incorporating Au NPs between nanorods leads to an even superior behavior. After analyzing various diameters of Au nanoparticles and densities of ZnO nanorod arrays and adopting the optimum value of both, results of our simulations demonstrated that CH3NH3PbI3 perovskite infiltrated ZnO NRs solar cell with Au NPs (without Au NPs) has an efficiency of “16.77%” (14.51%), the fill factor of “78.28%” (76.60%) with a short circuit current density of “20.56 ????/????2”( 18.07 ????/????2). This drastic improvement can pave the way for further studies to fabricate and reap benefit out of the plasmonic effect in perovskite solar cells.
关键词: Perovskite solar cell,FDTD simulation,Plasmonic nanoparticles,ZnO nanorods
更新于2025-09-19 17:13:59
-
The Impact of Growth Temperature on Nanorod Morphology and Optical Properties for CH3NH3PbI3 Perovskite Solar Cell Device Application
摘要: Perovskite solar cells have been studied intensively by photovoltaic researchers in recent years due to their ability to absorb proper light. This research describes the CH3NH3PbI3 perovskite solar cell fabrication process. The solar cell structure is composed of ITO/ZnO seed layer/ZnO NRs/CH3NH3PbI3, with ZnO NRs as a nano shaped stem layer where perovskite crystals form. ZnO NRs have been successfully synthesized on the ITO substrate by a hydrothermal method. The ZnO seed layer is synthesized by a spin coating method in a mixture of zinc acetate dihydrate solution and ethanol. ZnO NRs were synthesized using hexamethylenetetramine (HMT) and zinc nitrate with a 1:1 molar ratio for 6 h. Some variations in growth temperature used were 80, 90 and 100 oC with a zinc nitrate concentration of 50 mM. Similarly, perovskite film devices are made through a two-step deposition using PbI2 and CH3NH3I as the main ingredients. The effects of synthesis conditions on ZnO NRs film and perovskite film devices were systematically investigated to look at the structure, morphology, optical properties of films and electrical properties of films using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), IV meter and LCR AC meter. The SEM results show that as the temperature increases, the size of the diameter and length of the rods are increased. The large rod diameter and length decrease the value of energy band gap. ZnO NRs synthesized with 50 mM concentrations at 100 oC showed the best results regarding morphology and optical properties. The film has a diameter size of 365 nm, length of the rod of 5.1 μm, and an energy band gap of 3.15 eV. The diffraction results indicate a PbI2 peak implying that it has not been converted to CH3NH3PbI3. The existence of PbI2 is suspected of opening the gap of recombination so that the current value measured by I-V meter is relatively small (0.186×10-6 μA). The low current that was generated indicates a high dielectric value and resistivity so that the light absorbing ability is less than perfect.
关键词: hydrothermal,perovskite solar cell,seed layer,ZnO nanorods
更新于2025-09-19 17:13:59