- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
On-off-on relay fluorescence recognition of ferric and fluoride ions based on indicator displacement in living cells
摘要: A new boronic acid derivative functionalized with a 4-(3-(4-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazol-5-yl)phenyl (IOP) moiety was synthesized for use as a sequential “on-off-on”-type relay fluorescence probe for Fe3+ ions and F? ions with high selectivity and sensitivity under physiological conditions. The introduction of Fe3+ to IOP boronic acid (IOPBA) formed an Fe3+-IOPBA complex, which led to quenching of the blue fluorescence intensity at 458 nm. The lowest-energy conformation of IOPBA was theoretically predicted to adopt an extended structure, and the Fe3+ ion in the Fe3+-IOPBA complex was coordinated to two phenyl groups to form a p-complex. Upon addition of F? to the Fe3+-IOPBA complex, the original fluorescence was recovered due to formation of [FeF6]3?, resulting in “on-off-on”-type sensor behavior. IOPBA showed high selectivity towards Fe3+ among other cations. Moreover, the Fe3+-IOPBA complex showed specific selectivity towards F?, with other cations and anions not interfering with detection. Both sensing processes showed 1:1 stoichiometry with binding constants of 6.87 × 106 and 4.49 × 106 mol–1 L for Fe3+ with IOPBA and F? with Fe3+-IOPBA, respectively. The limits of detection for Fe3+ and F? were 10 and 1 nM, respectively. The proposed method was successfully applied in real water samples. Furthermore, the probe had low cytotoxicity and was successfully used as a bioimaging reagent to detect intracellular Fe3+ and F? in living HeLa cells.
关键词: Fluorescence imaging,On-off-on sensor,Probe for Fe3+ ions and F? ions,Living HeLa cells,Boronic acid derivative
更新于2025-11-21 11:08:12
-
d-Glucose recognition based on phenylboronic acid-functionalized polyoligomeric silsesquioxane fluorescent probe
摘要: We report a new strategy to synthesize hybrid fluorescent nanosensors consisting of phenylboronic acid-functionalized POSS (POSS–PBA) and diol-modified 8-anilino-1-naphthalenesulfonic acid (ANSA (a fluorescent dye)) for the detection of the biologically important D-glucose. The probe was characterized by FT-IR and 1H-NMR analyses, and the photoluminescence intensity was measured under various conditions to confirm its glucose sensing ability. Our POSS-APBA-dye probe could detect glucose at concentrations of 0–20 mg/mL, with a good linear relationship even at low glucose concentrations of 0–1 mg/mL. The properties of the POSS-APBA-dye probe were evaluated and compared with those of an APBA-dye probe. The glucose sensing ability of our POSS-APBA-dye probe was largely unaffected by the presence of interfering substances. The probe showed high sensing ability in a pH 5 environment and long-term (approximately 40 days) fluorescence stability.
关键词: polyhedral oligomeric silsesquioxane,glucose sensor,fluorescence probe,boronic acid derivative
更新于2025-09-23 15:21:01