- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Development of Graphitic Domains in Carbon Foams for High Efficient Electro/Photo-to-Thermal Energy Conversion Phase Change Composites
摘要: In this research work, hierarchical porous carbon foams (CFs) with high surface area and three dimensionally (3D) interconnected macro/meso/microporous structures were prepared through pyrolysis of stabilized poly(acrylonitrile-co-divinylbenzene) P(AN-co-DVB) polyHIPE foams at 900 °C under nitrogen atmosphere. The prepared CFs revealed high surface area (540 m2 g-1), semi-ordered nanoporosity, high electrical conductivity (470 S m-1) and high graphitization degree. Further, HR-TEM observation of CFs revealed the formation of graphitic domains in the structures. The obtained CFs were employed for encapsulation of phase change materials (PCMs) e.g. paraffin (PA) and polyethylene glycol (PEG). The prepared PCMs composites revealed the excellent reversible thermal/chemical stability after frequent 200 heating/cooling cycles. Black CF/PA and CF/PEG composites can be promising structures to driven either by applying a small voltage (3-3.6 V) with high electric-to thermal efficiency (up to 85%) or by irradiating with sunlight with high photo-to thermal efficiency (up to around 91%).
关键词: paraffin and poly ethylene glycol,carbon foam,phase change materials
更新于2025-09-23 15:23:52
-
A novel SiC nanowire aerogel consisted of ultra long SiC nanowires
摘要: SiC nanowire aerogel (SNA) with highly porous 3D nanowire architecture was synthesized by polymer pyrolysis chemical vapor deposition (PPCVD) process to deposit SiC nanowires in the pores of carbon foam, followed by high temperature oxidation of carbon foam. The microstructure of the prepared SNA was characterized by SEM, TEM and a large number of interweaving SiC nanowires with a diameter of 80-100 nm and a length of hundreds of micrometers form the highly porous 3D nanowire architecture of SNA. The prepared SNA possesses the performance combination of ultra-low density (30±7 mg·cm-3), high-temperature oxidation resistance (750 °C), noncombustible and fire resistance property in the fire, excellent thermal insulating property (0.03 W·m-1·k-1 at room temperature in He) and compressive strength of 0.11 MPa, which is applicable as high-temperature heat insulator, ceramic matrix composite, high temperature flue gas filter, fire-proofing material and catalyst carrier.
关键词: Carbon foam,Aerogel,SiC nanowire,CVD
更新于2025-09-23 15:23:52
-
Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam
摘要: TiO2/carbon composites have been well studied as solar-light photocatalysts because they combine the advantages of TiO2 (good photocatalytic activity) and carbon (enhanced charge carrier separation). Mesoporous TiO2 aerogels are fragile by nature and the addition of free-standing three-dimensional (3D) porous carbon foam (CF) not only makes it easy for separation and collection after photocatalytic treatment but also acts as a scaffold for the long-term application of TiO2 aerogels in the photocatalysis. Hence, recent reports have shown that mesoporous TiO2 aerogel/CF composites synthesized by the carbonization of a polymer followed by using the sol-gel method are significant for use in photocatalysis applications. In addition, the 3D macroporous CF not only acts as a support for TiO2 aerogels but also improves the efficiency of light use and extends the photoresponse of TiO2 to the visible region. The TiO2 aerogel was homogeneously distributed onto the 3D CF because of the vacuum infiltration used during the synthesis of the composites. The simulated solar-light irradiated photocatalytic degradation of Rhodamine B organic pollutant was used to evaluate the TiO2 aerogel/CF composite catalysts, which was higher than with a pristine TiO2 aerogel. This facile synthesis approach for 3D foam type TiO2/carbon composites could be useful in the treatment of wastewater.
关键词: anatase,Mesoporous TiO2 aerogel,photocatalysis,sol-gel method,carbon foam
更新于2025-09-23 15:19:57
-
Synthesis of silica microspheres on silicon-modified carbon foams under ablation
摘要: Silica microspheres (SMs) were in situ synthesized in silicon-modified porous carbon foams (SCFs) by an economic and efficient technique – high temperature oxyacetylene torch ablation. The microstructure and formation mechanism of SMs were analyzed in detail. Results showed that the resultant SMs generally were several microns in diameter, and mainly distributed in the ablation center zone. The formation mechanism was governed by the vapor–liquid–solid principle during the process of ablation and cooling. The influence of the ablative flame on the physicochemical property of SCFs was the leading cause of the bizarre SMs.
关键词: ablation,Silica microsphere,carbon foam
更新于2025-09-09 09:28:46