修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Role of ion energy flux on the structural and morphological properties of silicon oxy-nitride composite films deposited by plasma focus device

    摘要: Crystalline silicon oxy-nitride (SiON) composite films are deposited on Si substrate for multiple (5, 15, 25 and 50) focus shots (FS) by plasma focus device. The X-rays diffraction patterns reveal the development of various diffraction peaks related to Si, Si3N4, and SiO2 phases which confirms the formation of SiON composite film. The intensity of Si3N4 (1 0 2) plane is linearly increased with the increase of FS. The Si3N4 (1 0 2) phase does not nucleate for 5 FS. Raman analysis confirms the formation of β–Si–N phase. Raman and Fourier transform infrared spectroscopy analysis reveals that the strength of chemical bonds like Si–N, Si–O formed during the deposition process of SiON composite films is associated with the bonds intensity which in turn depends on the number of FS. The field emission scanning electron microscopic analysis reveals that the surface morphology like size, shape and distribution of micro/nano-dimensional particles, film compactness and the formation of micro-rods, micro-teethes and micro-tubes of SiON composite films is entirely associated with the rise in substrate surface transient temperature which in turn depends on the increasing number of FS. The EDX spectrum confirms the presence of Si (22.5 ± 4.7 at. %), N (13.4 ± 4.5 at. %) and O (54.7 ± 11.3 at. %) in the SiON composite film. The thickness of SiON composite film deposited for 50 FS is found to ~ 15.47 μm.

    关键词: composite,crystallite size,micro-tubes,Plasma focus,thickness,XRD

    更新于2025-09-23 15:21:21

  • [IEEE 2019 4th International Conference on Electrical Information and Communication Technology (EICT) - Khulna, Bangladesh (2019.12.20-2019.12.22)] 2019 4th International Conference on Electrical Information and Communication Technology (EICT) - Effect of growth temperature on the structural and optical properties of CdS:O thin films for CdTe solar cells

    摘要: Oxygenated Cadmium Sulfide (CdS:O) is used as a window layer for high-performance CdTe thin-film solar cells. In this work, the effect of growth temperature on the physical properties of (CdS:O) layer is reported. The CdS:O layer was synthesized on commercially available soda-lime glass (SLG) by using a reactive radio frequency (RF) sputtering in 1.5% oxygen (O2)/argon (Ar) ambient as a function of substrate temperature (25 °C to 300 °C). The structural and optical properties of the as-grown CdS:O thin films were carried out by X-ray diffraction and UV-VIS-Spectroscopy respectively. The XRD patterns revealed intriguing structural natures of the deposited films such as amorphous/semi-amorphous nature in the substrate temperature range 25 – 150 °C, then polycrystalline nature in the range 200 – 250 °C and again amorphous nature at 300 °C. The transmission spectra exhibited higher optical transmission in the visible wavelength which signifies the enhancement of photo generated current of CdTe solar cells. The bandgap of room temperature (RT) deposited CdS:O thin film for 1.5% O2/Ar was found to be increased 12.50% in comparison with CdS film deposited in pure Ar ambient. Besides, the bandgap of CdS:O films for 1.5% O2/Ar was decreased with the increase of the substrate temperature. Thus, it has been concluded that the CdS:O thin film deposited at RT found to be better for CdTe solar cell application.

    关键词: optical bandgap,substrate temperature,CdTe,rf-sputtering,O2/Ar ratio,Crystallite size,CdS:O

    更新于2025-09-23 15:21:01

  • Crystallite size and microstrain: XRD line broadening analysis of AgSiN thin films

    摘要: Purpose – This paper aims to determine the crystallite size and microstrain values of AgSiN thin films using potential approach called approximation method. This method can be used as a replacement for other determination methods such as Williamson-Hall (W-H) plot and Warren-Averbach analysis. Design/methodology/approach – The monolayer AgSiN thin films on Ti6Al4V alloy were fabricated using magnetron sputtering technique. To evaluate the crystallite size and microstrain values, the thin films were deposited under different bias voltage ((cid:1)75, (cid:1)150 and (cid:1)200 V). X-ray diffraction (XRD) broadening profile along with approximation method were used to determine the crystallite size and microstrain values. The reliability of the method was proved by comparing it with scanning electron microscopy graph and W-H plot method. The second parameters’ microstrain obtained was used to project the residual stress present in the thin films. Further discussion on the thin films was done by relating the residual stress with the adhesion strength and the thickness of the films. Findings – XRD-approximation method results revealed that the crystallite size values obtained from the method were in a good agreement when it is compared with Scherer formula and W-H method. Meanwhile, the calculations for thin films corresponding residual stresses were correlated well with scratch adhesion critical loads with the lowest residual stress was noted for sample with lowest microstrain and has thickest thickness among the three samples. Practical implications – The fabricated thin films were intended to be used in antibacterial applications. Originality/value – Up to the knowledge from literature review, there are no reports on depositing AgSiN on Ti6Al4V alloy via magnetron sputtering to elucidate the crystallite size and microstrain properties using the approximation method.

    关键词: AgSiN thin films,XRD-approximation method,Microstrain,Crystallite size

    更新于2025-09-23 15:21:01

  • Annealing of Gadolinium-Doped Ceria (GDC) Films Produced by the Aerosol Deposition Method

    摘要: Solid oxide fuel cells need a diffusion barrier layer to protect the zirconia-based electrolyte if a cobalt-containing cathode material like lanthanum strontium cobalt ferrite (LSCF) is used. This protective layer must prevent the direct contact and interdiffusion of both components while still retaining the oxygen ion transport. Gadolinium-doped ceria (GDC) meets these requirements. However, for a favorable cell performance, oxide ion conducting films that are thin yet dense are required. Films with a thickness in the sub-micrometer to micrometer range were produced by the dry room temperature spray-coating technique, aerosol deposition. Since commercially available GDC powders are usually optimized for the sintering of screen printed films or pressed bulk samples, their particle morphology is nanocrystalline with a high surface area that is not suitable for aerosol deposition. Therefore, different thermal and mechanical powder pretreatment procedures were investigated and linked to the morphology and integrity of the sprayed films. Only if a suitable pretreatment was conducted, dense and well-adhering GDC films were deposited. Otherwise, low-strength films were formed. The ionic conductivity of the resulting dense films was characterized by impedance spectroscopy between 300 ?C and 1000 ?C upon heating and cooling. A mild annealing occurred up to 900 ?C during first heating that slightly increased the electric conductivity of GDC films formed by aerosol deposition.

    关键词: room temperature impact consolidation (RTIC),crystallite size,dense films,thermal powder treatment,electrical conductivity

    更新于2025-09-23 15:21:01