修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

339 条数据
?? 中文(中国)
  • How doping configuration affects electron transport in monolayer zigzag graphene nanoribbon

    摘要: The electrical conductance of hybrid monolayer graphene/h-BN ribbon with zigzag edges is numerically investigated using density functional theory. Our findings reveal that transmission of graphene/h-BN hybrid structure is sensitive to the arrangement of its component. The result also shows that replacing carbon atoms with boron and nitrogen totally reduces the transmission. Three different arrangement of BN domains have been investigated: replacing carbon atoms with boron and nitrogen in the transport direction, perpendicular to the transport direction and diagonal direction. We find that combination of many factors such as edge effect, additional charge carrier, interface of BN and carbon domains can alter transmission significantly.

    关键词: Density functional theory,Doping configuration,Graphene/h-BN hybrid,Electronic transport

    更新于2025-09-23 15:23:52

  • Influence of compression strains on photon absorption of silicene and germanene

    摘要: In this paper, optical properties of silicene and germanene under compressive homogeneous strain are investigated within the density function theory. Results show that the optical-field response are strongly depend on the amount of applied strain. As the strain increases, the amount of optical absorption increases. In fact, by applying the compressive strain in the silicene and germanene, the band gap at the Dirac points decreases where ultimately reaches zero. Depending on the amount of strain, absorption peak shows red and blue shifts by increasing the strain. This can be realized by considering the change of the band gap energy and transition rates by the strain. In both of these graphene-like structures, the light absorption along zigzag direction is greater than that of the armchair direction.

    关键词: Graphene-like structures,Compressive strain,Density functional theory,Optical properties

    更新于2025-09-23 15:23:52

  • Scandium Molybdate Microstructures with Tunable Phase and Morphology: Microwave Synthesis, Theoretical Calculations, and Photoluminescence Properties

    摘要: In this paper, scandium molybdate microstructures have been prepared from solution via a microwave heating method. By controlling the experimental parameters such as molar ratio of reagent and reaction time, scandium molybdates with tunable phase and diverse morphologies including snowflakes, microflowers, microsheets, and branched spindles were obtained. The density of states and surface energies of Sc2Mo3O12 were primarily studied from first-principles calculations. An indirect band gap of 3.56 eV was observed for crystalline Sc2Mo3O12, and the surface energies of various facets were determined to be 0.27–0.91 J/m2. The influence of n(Sc3+):n(Mo7O24 6?) (short for Sc/Mo) molar ratio was systematically investigated and well-characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and UV–vis absorption spectroscopy (UV–vis). Results indicate that the Sc/Mo molar ratio has a great effect on the phase and morphology. Diffuse reflection spectra (DRS) revealed the Egap can be readily tuned from 3.69 to 4.16 eV, which is in accordance with the theoretical result. The photoluminescence (PL) properties of Eu3+-doped Sc2Mo3O12 were discussed. This facile synthesis strategy could be extended to the synthesis of other molybdates.

    关键词: photoluminescence,morphology control,microwave synthesis,scandium molybdate,density functional theory

    更新于2025-09-23 15:23:52

  • Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites

    摘要: Hybrid organic–inorganic semiconductors feature complex lattice dynamics due to the ionic character of the crystal and the softness arising from non-covalent bonds between molecular moieties and the inorganic network. Here we establish that such dynamic structural complexity in a prototypical two-dimensional lead iodide perovskite gives rise to the coexistence of diverse excitonic resonances, each with a distinct degree of polaronic character. By means of high-resolution resonant impulsive stimulated Raman spectroscopy, we identify vibrational wavepacket dynamics that evolve along different configurational coordinates for distinct excitons and photocarriers. Employing density functional theory calculations, we assign the observed coherent vibrational modes to various low-frequency (?50 cm?1) optical phonons involving motion in the lead iodide layers. We thus conclude that different excitons induce specific lattice reorganizations, which are signatures of polaronic binding. This insight into the energetic/configurational landscape involving globally neutral primary photoexcitations may be relevant to a broader class of emerging hybrid semiconductor materials.

    关键词: resonant impulsive stimulated Raman spectroscopy,polaronic character,two-dimensional perovskites,density functional theory,excitons,phonon coherences

    更新于2025-09-23 15:23:52

  • Probing interlayer excitons in a vertical van der Waals p-n junction using scanning probe microscopy technique

    摘要: Two dimensional (2D) semiconductors feature exceptional optoelectronic properties controlled by strong confinement in one dimension. In this contribution, we studied interlayer excitons in a vertical p-n junction made of bilayer n-type MoS2 and few layers of p-type GaSe using current sensing atomic force microscopy (CSAFM). The p-n interface is prepared by mechanical exfoliation onto highly ordered pyrolytic graphite (HOPG). Thus the heterostructure creates an ideal layered system with HOPG serving as the bottom contact for the electrical characterization. Home-built Au tips are used as the top contact in CSAFM mode. During the basic diode characterization, the p-n interface shows strong rectification behavior with a rectification ratio of 104 at ±1 V. The I-V characteristics reveal pronounced photovoltaic effects with a fill factor of 0.55 by an excitation below the band gap. This phenomenon can be explained by the dissociation of interlayer excitons at the interface. The possibility of the interlayer exciton formation is indicated by density functional theory (DFT) calculations on this heterostructure: the valence band of GaSe and the conduction band of MoS2 contribute to an interface-specific state at an energy of about 1.5 eV. The proof of excitonic transitions to that state is provided by photoluminescence measurements at the p-n interface. Finally, photocurrent mapping at the interface under an excitation wavelength of 785 nm provides evidence of efficient extraction of such excitons. Our results demonstrate a pathway towards a two dimensional device for future optoelectronics and light harvesting assisted by interlayer excitons in a van der Waals heterostructure.

    关键词: optoelectronics,van der Waals heterojunction,GaSe,density functional theory,MoS2,interlayer exciton,p-n junction

    更新于2025-09-23 15:23:52

  • Tuneable thermal expansion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

    摘要: The linear coefficient of thermal expansion for a mixture of poly(3,4-ethylenedioxythiophene) and polystyrene sulfonate (PEDOT:PSS) is calculated using density functional theory and the Debye-Grüneisen model. The linear coefficient of thermal expansion is a key factor in thermal management (thermal conductivity, thermal stress and thermal fatigue) of microelectronic and energy devices, being common applications of the conjugated polymeric PEDOT:PSS system. The obtained value of 53×10-6 K-1 at room temperature can be rationalised based on the electronic structure analysis. The PEDOT and PSS units are bonded by a dipole-dipole interaction between S in PEDOT and H in PSS. A C-C bond in a benzene ring (PSS) or thiophene (PEDOT) is up to 13 times stronger than the S-H bond. By adjusting the population of the S-H bonds by deprotonating PSS, the linear coefficient of thermal expansion can be enhanced by 57%. This allows for tuning the thermal properties of PEDOT:PSS in cutting-edge devices.

    关键词: electronic structure,thermal properties,density functional theory,conjugated polymers

    更新于2025-09-23 15:23:52

  • Transferability of interatomic potentials for molybdenum and silicon

    摘要: Interatomic potentials are widely used in computational materials science, in particular for simulations that are too computationally expensive for density functional theory (DFT). Most interatomic potentials have a limited application range and often there is very limited information available regarding their performance for specific simulations. We carried out high-throughput calculations for molybdenum and silicon with DFT and a number of interatomic potentials. We compare the DFT reference calculations and experimental data to the predictions of the interatomic potentials. We focus on a large number of basic materials properties, including the cohesive energy, atomic volume, elastic coefficients, vibrational properties, thermodynamic properties, surface energies and vacancy formation energies, which enables a detailed discussion of the performance of the different potentials. We further analyze correlations between properties as obtained from DFT calculations and how interatomic potentials reproduce these correlations, and suggest a general measure for quantifying the accuracy and transferability of an interatomic potential. From our analysis we do not establish a clearcut ranking of the potentials as each potential has its strengths and weaknesses. It is therefore essential to assess the properties of a potential carefully before application of the potential in a specific simulation. The data presented here will be useful for selecting a potential for simulations of Mo or Si.

    关键词: atomistic simulation,density functional theory,interatomic potentials,transferability

    更新于2025-09-23 15:23:52

  • Density functional theory study of aluminium and chromium doped Yttrium ion garnet

    摘要: Density functional theory has been performed to investigate the atomic structure, electronic and magnetic properties of Al3+ and Cr3+ co-doped cubic Y3Fe5O12 (YIG) garnet crystal. Results show that Al3+ and Cr3+ ions are energetically substitution of Fe3+ at the tetrahedral and octahedral sites in YIG, respectively. The doping concentration do not affect the preferential site occupancy for separate individual substitution. The magnetic moment increases and decreases for the single Cr and Al element doping, respectively. The magnetic moment and lattice constant decreases with the increase of Al–Cr concentrations. The magnetic moment decrease from 5.0 to 3.875 μB linearly with x increases from 0 to 0.4 in Y3AlxCrxFe5?xO12. These results indicate that doping can be adopted for the modi?cation of magnetic properties of YIG.

    关键词: doping,magnetic moment,density functional theory,Y3Fe5O12 (YIG)

    更新于2025-09-23 15:23:52

  • Transport properties of doped zigzag graphene nanoribbons

    摘要: Numerous studies on materials have driven the development of modern nanoelectronic devices. And research also shown that the integrated circuits have entered the era of the nanoelectronic scales from the scale of microelectronics. But the limitations of copper as a traditional connection, such as the resistivity increases a lot, further causing a lot of heat in the interconnect, have been highlighted. Therefore, we need new materials as the substitution of copper. The metallic properties exhibited by the zigzag graphene nanoribbons (ZGNRs) can be controlled by the edge states, doping and different widths of the nanoribbons. In this paper, we applied simulation to dope copper atom chains on ZGNRs. We found an energetic phenomenon that after doping the nanoribbons conductivity have increased significantly than the original. In addition, the transmission channels are mainly concentrated near the doping position, and the width used for transmission is greatly reduced after doping. It is expected to be used as an inter-connect application in nano-integrated circuits in the future.

    关键词: Density functional theory,Interconnect,Electronic transport property,Non-equilibrium Green's function,Zigzag graphene nanoribbons,Doping

    更新于2025-09-23 15:23:52

  • Surface doping of ZnO nanowires with Bi: Density-functional supercell calculations of defect energetics

    摘要: Defect calculations using the density and hybrid functionals in combination with the supercell approach are employed to characterize the electrical properties of a number of ZnO nanowires of various thicknesses doped with Bi atoms occupying surface sites. The variation of the differences between the total energies of charged and neutral supercells with the supercell size is studied, which led the authors to devise an extrapolation procedure to obtain reliable defect energetics in the dilute defect limit. The calculated defect formation energies indicate that although the substitution of Bi into Zn or O sites can take place spontaneously under suitable thermodynamic conditions, the substitution into Zn sites is generally more likely. The defect (charge-state) transition energies are computed and parameterized as a function of the nanowire thickness. It is revealed that the substitution of Bi into O (Zn) sites on the surface of ZnO nanowires yields deep acceptor (shallow donor) levels (except for extremely thin nanowires). It is therefore concluded that the incorporation of Bi into the surface of ZnO nanowires results in n-type doping.

    关键词: ZnO nanowires,defect energetics,n-type doping,bismuth doping,supercell calculations,density functional theory

    更新于2025-09-23 15:23:52