修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

339 条数据
?? 中文(中国)
  • Extrinsic Defects in Crystalline MoO <sub/>3</sub> : Solubility and Effect on the Electronic Structure

    摘要: The effect of six potential contaminants (Cu, In, Ga, Se, Sn and Zn) and five potential dopants (Ti, Mn, Sc, V and Y) on the electronic and optical properties of molybdenum oxide (MoO3) contact layers for solar cells was investigated using point defect analysis informed by density functional theory simulations. Of the contaminants investigated, Sn, In and Ga were found to be highly insoluble at all relevant temperatures and pressures, and therefore not a concern for solar cell manufacturing. Zn, Cu and Se exhibit some solubility, with the latter two appearing to introduce detrimental defect states near the valence band. This contamination can be avoided by increasing the O2 partial pressure during MoO3 deposition. Out of five potential aliovalent dopants, Sc, Ti and Y were disregarded due to their limited solubility in MoO3, while V was found to be highly soluble and Mn somewhat soluble. The effect of Mn and V doping was shown to be strongly dependent on the O2 partial pressure during deposition with a high pO2 favoring the formation of substitutional defects (potentially beneficial in the case of Mn doping due to the addition of defects states near the conduction band) while low pO2 favors interstitial defects.

    关键词: electronic structure,solubility,solar cells,molybdenum oxide,extrinsic defects,point defect analysis,density functional theory,MoO3

    更新于2025-09-23 15:21:21

  • Formation of Occupied and Unoccupied Hybrid Bands at Interfaces between Metals and Organic Donors/Acceptors

    摘要: Efficient charge transport in organic semiconductors and at their interfaces with electrodes is crucial for the performance of organic molecule-based electronic devices. Band formation fosters effective transport properties and can be found in organic single crystals of large π-stacking aromatic molecules. However, at molecule/metal interfaces hybrid band formation and band dispersion is a rarely observed phenomenon. Using angle-resolved two-photon photoemission supported by density functional theory calculations we demonstrate such band formation for two different molecule/metal systems, namely tetrathiafulvalene (TTF)/Au(111) and tetrafluoro-tetracyanoquinodimethane (F4TCNQ)/Au(111), in the energy region of occupied as well as unoccupied electronic states. In both cases strong adsorbate/substrate interactions result in formation of interface states due to hybridization between localized molecular states and delocalized metal bands. These interface states exhibit significant dispersions. Our study reveals that hybridization in combination with an extended well-ordered adsorption structure of the π-conjugated organic molecules is a striking concept to receive and experimentally observe band formation at molecule/metal interfaces.

    关键词: band formation,organic semiconductors,molecule/metal interfaces,hybridization,charge transport,density functional theory,angle-resolved two-photon photoemission

    更新于2025-09-23 15:21:21

  • Synthesis of Pyridazine Derivatives by Suzuki-Miyaura Cross-Coupling Reaction and Evaluation of Their Optical and Electronic Properties through Experimental and Theoretical Studies

    摘要: A series of π-conjugated molecules, based on pyridazine and thiophene heterocycles 3a–e, were synthesized using commercially, or readily available, coupling components, through a palladium catalyzed Suzuki-Miyaura cross-coupling reaction. The electron-deficient pyridazine heterocycle was functionalized by a thiophene electron-rich heterocycle at position six, and different (hetero)aromatic moieties (phenyl, thienyl, furanyl) were functionalized with electron acceptor groups at position three. Density Functional Theory (DFT) calculations were carried out to obtain information on the conformation, electronic structure, electron distribution, dipolar moment, and molecular nonlinear response of the synthesized push-pull pyridazine derivatives. Hyper-Rayleigh scattering in 1,4-dioxane solutions, using a fundamental wavelength of 1064 nm, was used to evaluate their second-order nonlinear optical properties. The thienylpyridazine functionalized with the cyano-phenyl moiety exhibited the largest first hyperpolarizability (β = 175 × 10?30 esu, using the T convention) indicating its potential as a second harmonic generation (SHG) chromophore.

    关键词: pyridazine,Density Functional Theory (DFT),Nonlinear optics (NLO),Second Harmonic Generators (SHG),Suzuki-Miyaura coupling

    更新于2025-09-23 15:21:21

  • Characterizing Molecular Adsorption on Biodegradable MnO <sub/>2</sub> Nanoscaffolds

    摘要: Biodegradable MnO2 nanoscaffolds have recently been designed for advanced stem cell therapy. These nanomaterials strongly bind extracellular matrix proteins and effectively deliver therapeutic molecules, which significantly enhance stem cell survival and neuronal differentiation both in vitro and in vivo. In this work, we combine molecular dynamics simulations, density functional theory calculations and UV-Vis spectroscopy experiments to examine the selectivity and efficiency of a MnO2 nanosheet in adsorbing neurogenic drugs. To uncover the fundamental principles governing the drug loading process, we have systematically examined a series of model aromatic and alkyl compounds with characteristic functional groups and demonstrated that molecular adsorption on the MnO2 nanosheet results from an interplay of dispersion, electrostatic and charge transfer interactions. We have then proposed a metric that efficiently predicts the qualitative adsorption affinity of a guest molecule on the MnO2 nanosheet based on its structural and chemical features, which will facilitate the experimental screening of proper adsorbates for efficient molecular delivery and aid the development of MnO2-based nanoscaffolds for biomedical applications.

    关键词: adsorption affinity,molecular dynamics simulations,density functional theory,MnO2 nanoscaffolds,neurogenic drugs,UV-Vis spectroscopy

    更新于2025-09-23 15:21:21

  • Mechanisms of Semiconducting 2H to Metallic 1T Phase Transition in Two-Dimensional MoS <sub/>2</sub> Nanosheets

    摘要: In the present work, phase transition mechanisms from semiconducting 2H phase to metallic 1T phase in MoS2 nanosheets were studied using density functional theory (DFT) method. Various 2H→1T phase transition mechanisms that consist of nucleation and propagation steps, which simulated by collective rotational and rotational/translational movements, single atom translational movement, as well as the gliding movement of one row for sulfur (S) atoms, on both the basal plane and Mo- and S-edges with different S coverages were investigated. On the perfect basal plane, the 1T phase nucleation is unlikely due to the extremely high barrier of 2.25 eV/atom. Whereas the presence of defective S vacancies on the basal plane dramatically facilitate the 1T phase nucleation and propagation around the defective sites by the collective rotational movement of three S atoms. On the 2H phase basal plane with two S vacancies, the kinetic barriers for the 1T phase nucleation are as low as of 0.66~0.77 eV/atom. Like the promoting effect of S vacancies on the phase transition over the basal plane, DFT results suggest that the S coverage on the Mo- and S-edges will affect the 1T phase nucleation and propagation. The 1T phase nucleation starting with the translational movement of single S atom on the bare Mo-edge and the gliding movement of an entire row of S atoms on the S-edge with 50%S coverage are kinetically favorable. While the 1T phase formation at the Mo-edge with 50%S coverage and the S-edge with 100%S coverage are unlikely. The present work not only confirms the important role of S vacancies/coverages in the 2H-1T phase transition, but also provides new insight into how and where the 2H-1T phase transition occurs at the atomic level, which also sheds light on the general phase transition mechanism for two-dimensional transition metal dichalcogenide materials.

    关键词: 2H to 1T,MoS2,density functional theory,S vacancies,phase transition,S coverages

    更新于2025-09-23 15:21:21

  • Controlling Topological States in Topological/Normal Insulator Heterostructures

    摘要: We have performed a systematic investigation of the nature of the nontrivial interface states in topological/normal insulator (TI/NI) heterostructures. On the basis of first principles and a recently developed scheme to construct ab initio effective Hamiltonian matrices from density functional theory calculations, we studied systems of realistic sizes with high accuracy and control over the relevant parameters such as TI and NI band alignment, NI gap, and spin?orbit coupling strength. Our results for IV?VI compounds show the interface gap tunability by appropriately controlling the NI thickness, which can be explored for device design. Also, we verified the preservation of an in-plane spin texture in the interface-gaped topological states.

    关键词: density functional theory,heterostructures,spin?orbit coupling,topological insulators,normal insulators

    更新于2025-09-23 15:21:21

  • Electronic transport in degenerate (100) scandium nitride thin films on magnesium oxide substrates

    摘要: Scandium nitride (ScN) is a degenerate n-type semiconductor with very high carrier concentrations, low resistivity, and carrier mobilities comparable to those of transparent conducting oxides such as zinc oxide. Because of its small lattice mismatch to gallium nitride (GaN), <1%, ScN is considered a very promising material for future GaN based electronics. Impurities are the source of the degeneracy. Yet, which specific impurities are the cause has remained in contention. ScN thin films of various thicknesses were grown on magnesium oxide substrates in a (001) orientation using reactive magnetron sputtering across a range of deposition conditions. X-ray diffraction was used to verify crystal orientation. Film thicknesses ranging from 39 to 85 nm were measured using scanning electron microscopy. The electronic transport properties of the films were characterized using Hall-effect measurements at temperatures ranging from 10 to 320 K. At 10 K, the electron concentration varies from 4.4 (cid:2) 1020 to 1.5 (cid:2) 1021 cm(cid:3)3, resistivity from 2.1 (cid:2) 10(cid:3)4 to 5.0 (cid:2) 10(cid:3)5 X(cid:4)cm, and Hall mobility from 66 to 97 cm2/V(cid:4)s. Secondary ion mass spectroscopy (SIMS) was used to determine film compositions. Finally, density functional theory (DFT) was used to compute the activation energies for various point defects including nitrogen and scandium vacancies and oxygen and fluorine substituting for nitrogen. For both oxygen and fluorine substitution, the energies were negative, indicating spontaneous formation. Nevertheless, the combined results of the Hall, SIMS, and DFT strongly suggest that oxygen substitution is the primary mechanism behind the high carrier concentration in these samples.

    关键词: degenerate n-type semiconductor,Hall-effect measurements,Scandium nitride,density functional theory,electronic transport properties

    更新于2025-09-23 15:21:21

  • Theoretical study of Da??Aa?2a????a??A/Da????a??Aa?2a????a??A triphenylamine and quinoline derivatives as sensitizers for dye-sensitized solar cells

    摘要: We have designed four dyes based on D–A0–p–A/D–p–A0–p–A triphenylamine and quinoline derivatives for dye-sensitized solar cells (DSSCs) and studied their optoelectronic properties as well as the e?ects of the introduction of alkoxy groups and thiophene group on these properties. The geometries, single point energy, charge population, electrostatic potential (ESP) distribution, dipole moments, frontier molecular orbitals (FMOs) and HOMO–LUMO energy gaps of the dyes were discussed to study the electronic properties of dyes based on density functional theory (DFT). And the absorption spectra, light harvesting e?ciency (LHE), hole–electron distribution, charge transfer amount from HOMO to LUMO (QCT), D index, HCT index, Sm index and exciton binding energy (Ecoul) were discussed to investigate the optical and charge-transfer properties of dyes by time-dependent density functional theory (TD-DFT). The calculated results show that all the dyes follow the energy level matching principle and have broadened absorption bands at visible region. Besides, the introduction of alkoxy groups into triarylamine donors and thiophene groups into conjugated bridges can obviously improve the stability and optoelectronic properties of dyes. It is shown that the dye D4, which has had alkoxy groups as well as thiophene groups introduced and possesses a D–p–A0–p–A con?guration, has the optimal optoelectronic properties and can be used as an ideal dye sensitizer.

    关键词: alkoxy groups,thiophene group,density functional theory,dye-sensitized solar cells,D–A0–p–A/D–p–A0–p–A,triphenylamine,quinoline derivatives,time-dependent density functional theory,optoelectronic properties

    更新于2025-09-23 15:21:01

  • Crystalline structure, electronic and lattice-dynamics properties of NbTe2

    摘要: Layered-structure materials are currently relevant given their quasi-2D nature. Knowledge of their physical properties is currently of major interest. Niobium ditelluride possesses a monoclinic layered-structure with a distortion in the tellurium planes. This structural complexity has hindered the determination of its fundamental physical properties. In this work, NbTe2 crystals were used to elucidate its structural, compositional, electronic and vibrational properties. These findings have been compared with calculations based on density functional theory. The chemical composition and elemental distribution at the nanoscale were obtained through atom probe tomography. Ultraviolet photoelectron spectroscopy allowed the first determination of the work function of NbTe2. Its high value, 5.32 eV, and chemical stability allow foreseeing applications such as contact in optoelectronics. Raman spectra were obtained using different excitation laser lines: 488, 633, and 785 nm. The vibrational frequencies were in agreement with those determined through density functional theory. It was possible to detect a theoretically-predicted, low-frequency, low-intensity Raman active mode not previously observed. The dispersion curves and electronic band structure were calculated, along with their corresponding density of states. The electrical properties, as well as a pseudo-gap in the density of states around the Fermi energy are characteristics proper of a semi metal.

    关键词: Electronic band structure,Ultraviolet photoelectron spectroscopy,Density functional theory,Atom probe tomography,Niobium ditelluride,Layered-structure materials,Raman spectra,Density of states,Semimetal

    更新于2025-09-23 15:21:01

  • Enhancement in Photovoltaic Properties of <i>N</i> , <i>N</i> a??diethylaniline based Donor Materials by Bridging Core Modifications for Efficient Solar Cells

    摘要: The increasing demand of energy expedited the development of efficient photovoltaic materials.Herein, five push-pull donor materials (D1-D5) having N,N-diethylaniline as donor moiety and rhodanine-3-acetic as acceptor group are designed to be used as donor molecules in organic solar cells (OSCs). The bridging core modification of recently synthesized MR3 molecule (reference R) has been made with different π-spacers namely thiazole (B1), thieno[3,2-b]thiophene (B2), thiazolo[5,4-d] thiazole (B3), 2-(thiophen-2-yl)thiophene (B4) and 5-(thiazol-5yl)thiazole (B5). The structure–property relationship is studied and influence of bridging core modifications on photovoltaic, photophysical and electronic properties of D1-D5 are calculated and compared with reference R.The DFT and TDDFT calculations have been performed for the estimation of frontier molecular orbital (FMO) analysis, density of states (DOS) graphs, reorganization energies of electron and hole, open circuit voltage, photophysical characteristics, transition density matrix (TDM) surfaces and charge transfer analysis.Designed molecules exhibit better and comparable optoelectronic properties than synthesized reference molecules. Among all investigated molecules, D5 is proven as best candidate for OSCs application due to its promising photovoltaic properties including lowest band gap (2.24 eV), small electron mobility (λe = 0.0056 eV), small hole mobility (λh = 0.0046 eV), low binding energy (Eb = 0.21 eV), highest λmax values 610.76 nm (in gas) 670.22 nm (in acetonitrile) and high open circuit voltage (Voc = 1.17 V) with respect to HOMOdonor–LUMOPC61BM. This theoretical framework demonstrates that bridging core modification is a simple and effective alternative strategy to achieve the desirable optoelectronic properties. Furthermore, conceptualized molecules are superior and thus are recommended to experimentalist for out-looking future developments of highly efficient solar cells.

    关键词: Rhodanine-3-acetic acid,Solar cells,Photovoltaic properties,Bridging core modifications,Density functional theory (DFT),N,N-diethylaniline

    更新于2025-09-23 15:21:01