- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) - Atlanta, GA, USA (2018.10.31-2018.11.2)] 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) - Surge current capability of SiC MOSFETs in AC distribution systems
摘要: Whereas short circuit current and time ratings for power converter applications are often stated by SiC device manufacturers, surge current capability for AC electrical apparatus applications are rarely available. This paper present the experimental validation of surge current capability of selected SiC devices for low voltage AC distribution system applications. Because AC electrical apparatus, such as relays, contactors, and circuit breakers, have a different set of system parameters and requirements compared to traditional power converter applications, power semiconductor devices need to be validated from a different point of view. In fact, robustness to inductive short circuit currents, inrush currents, short and long time overload are some of the basic requirements for the utilization of WBG devices for these applications. In this paper, we compare the performance of different SiC MOSFETs under different types of AC waveform conditions.
关键词: semiconductor device characterization,temperature measurement,solid state circuit breaker,WBG semiconductor devices,overload capability,surge current,SiC MOSFET,electrical apparatus
更新于2025-09-04 15:30:14
-
Novel luminescent paper based calix[4]arene chelation enhanced fluorescence- photoinduced electron transfer probe for Mn2+, Cr3+ and F-
摘要: A novel structurally simple calix[4]arene attached 1-aminoanthraquinone associated lower rim calix[4]arene conjugate was synthesized and has been used as turn on/off/on fluorescence probe for Mn2+, Cr3+ and F-. This chelation enhanced fluorescence - photoinduced electron transfer (CHEF-PET) based TAAC probe has been applied for its analytical application in real samples such as Mn2+ from blood serum, Cr3+ and F- from industrial effluent with 94 - 99 % recovery. The limit of detection of this sensor is found to be 11 nM for Mn2+, 4 nM for Cr3+ and 19 nM for F- with the concentration range of 0-120 nM. Further, we report an easy-to-use, low cost and disposable paper-based sensing device for rapid chemical screening of Mn2+, Cr3+ and F-. The device comprises fluorescent sensing probes embedded into a nitrocellulose matrix where the resonance energy transfer phenomenon seems to be the sensing mechanism. It opens up new opportunities for simple and fast screening in remote settings where sophisticated instrumentation is not always available. The MOPAC-2016 software package has been used to optimize the TAAC using PM7 well established method and calculates the HOMO-LUMO energy band gap for structure TAAC and TAAC with Mn2+, Cr3+ and F- ion based structures.
关键词: paper based analytical device,computational study,CHEF,PET,calix[4]arene
更新于2025-09-04 15:30:14
-
Dual-Channel Photoelectrochemical Ratiometric Aptasensor with Up-converting Nanocrystals Using Spatial-Resolved Technique on Homemade 3D Printed Device
摘要: A near-infrared light (NIRL)-activated ratiometric photoelectrochemical (PEC) aptasensor was fabricated for detection of carcinoembryonic antigen (CEA) coupling with upconversion nanoparticles (UCNPs)-semiconductor nanocrystals-based spatial-resolved technique on a homemade 3D printing device in which a self-regulating integrated electrode was designed for dual signal readout. The as-prepared NaYF4:Yb, Er UCNPs@CdTe nanocrystals were initially assembled on two adjacent photoelectrodes, then CEA aptamer 1 (A1) and capture DNA (CA) were modified onto two working photoelectrodes (WP1 and WP2) through covalent binding, respectively, and then gold nanoparticle-labeled CEA aptamer 2 (Au NP-A2) were immobilized on the surface of functional WP2 for the formation of double-stranded DNA. Upon target CEA introduction, the various concentrations of CEA were captured on the WP1, whereas the binding of the CEA with Au NP-A2 could be released from the WP2 thanks to the highly affinity of CEA toward A2. The dual signal readout with the 'signal-off' of WP1 and 'signal-on' of WP2 were employed for the spatial-resolved PEC (SR-PEC) strategy to detect CEA as an analytical model. Combining NaYF4:Yb, Er UCNPs@CdTe nanocrystals with spatial-resolved model on 3D printing device, the PEC ratiometric aptasensor based on steric hindrance effect and exciton-plasmon interactions (EPI) exhibited a linear range from 10.0 pg mL-1 to 5.0 ng mL-1 with a limit of detection of 4.8 pg mL-1 under 980 nm illumination. The SR-PEC ratiometric strategy showed acceptable stability and reproducibility with a superior anti-interference ability. This approach can provide the guidance for the design of ratiometric, multiplexed and point-of-care biosensors.
关键词: 3D printing device,upconversion nanoparticles,Photoelectrochemical biosensor,ratiometric,spatial-resolved technique,carcinoembryonic antigen
更新于2025-09-04 15:30:14
-
Highly Efficient Fluorescent Organic Light-Emitting Devices Using a Luminescent Radical as the Sensitizer
摘要: In traditional fluorescent organic light-emitting diodes (OLEDs), the upper limit of internal quantum efficiency (IQE) is only 25% because 75 % triplet excitons created on the fluorescent dyes are non-luminous. Here, luminescent radicals are proposed as the sensitizer. Under ideal conditions, electrons and holes firstly recombine on the sensitizer molecule to create doublet excitons, then through energy transfer to generate singlet excitons on the fluorescent dye, finally via radiative decay to emit light. The upper limit of IQE can theoretically reach 100%. As an example, the maximum external quantum efficiency (EQE) of a fluorescent OLED sensitized by a luminescent radical, TTM-1Cz, has reached 8.1%, which is much higher than the upper limit of EQE of traditional fluorensenct OLEDs. Our results suggest a new route to realize highly efficient fluorescent OLEDs.
关键词: organic light-emitting device,doublet,luminescent radical,sensitize,deep-red
更新于2025-09-04 15:30:14