修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

264 条数据
?? 中文(中国)
  • Electrochemiluminescence sensing platform for ultrasensitive DNA analysis based on resonance energy transfer between graphitic carbon nitride quantum dots and gold nanoparticles

    摘要: Electrogenerated chemiluminescence (ECL) of semiconductor quantum dots (QDs) is considered as a powerful technique in the fabrication of biosensor, however, the inherent toxicity of the heavy metal ion containing in QDs limits their further applications. Thus, searching for environment-friendly luminescent nanomaterials with high electrochemiluminescence (ECL) e?ciency is an urgent goal. In this work, a solid-state method under low temperature was adopted to prepare graphitic carbon nitride quantum dots (g-CNQDs). By using coreactant K2S2O8, a strong cathodic ECL signal of g-CNQDs could be observed in phosphate bu?er. A novel ECL resonance energy transfer procedure was constructed between g-CNQDs (emitter) and gold nanoparticles (acceptor). A signal probe was formed by connecting gold nanoparticles at the hairpin DNA (Hai-DNA) terminal. When the signal probe was anchored on g-CNQDs, ECL resonance energy transfer occurred due to the ECL quenching of gold nanoparticles to g-CNQDs. This phenomenon decreased the ECL signal. In the presence of target DNA (T-DNA), the looped structure of Hai-DNA could be destroyed by T-DNA, and gold nanoparticles were separated from g-CNQDs. Accordingly, the ECL resonance energy transfer procedure was hindered, and the ECL signal was recovered again. The ECL intensities exhibited linear correlation with the logarithm of T-DNA concentration from 0.02 fM to 0.1 pM, and the limit of detection was 0.01 fM (3σ). With the developed ECL resonance energy transfer system, good selectivity and high sensitivity were achieved in T-DNA detection.

    关键词: Graphitic carbon nitride quantum dots,Electrochemiluminescence,DNA,Resonance energy transfer,Biosensor

    更新于2025-11-14 17:04:02

  • A novel photoelectrochemical biosensor for the sensitive detection of dual microRNAs using molybdenum carbide nanotubes as nanocarriers and energy transfer between CQDs and AuNPs

    摘要: Herein, a novel photoelectrochemical (PEC) biosensor was developed for the ultrasensitive detection of dual microRNAs (miRNAs), with the detection being based on energy transfer (ET) between carbon quantum dots (CQDs) and gold nanoparticles (AuNPs). The PEC platform consisted of a CQDs@Mo2C nanotube modified ITO electrode. Two hairpin probes (H1 and H2) carrying the Au NPs were used “switch off” and “switch on” the PEC signal of the CQDs, with a close approach of the tagged AuNPs to the CQDs quenching the PEC signal. The introduction of different miRNAs (miRNA-159b and miRNA-166a) altered the interparticle distance between the AuNPs and CQDs, thereby affecting the intensity of the PEC response. This approach allowed the highly sensitive detection of both miRNA-159b and miRNA-166a. The linear range of the biosensor for miRNA-159b and miRNA-166a detection were 0.5–5000 fM, with low detection limits of 0.15 fM and 0.21 fM, respectively. To our knowledge, this is the first reported CQDs-based ET biosensor for the PEC detection of dual miRNAs. Results suggest that this approach offers a promising platform for the ultrasensitive detection of multiple miRNAs.

    关键词: MicroRNA detection,AuNPs,Photoelectrochemistry,Energy transfer,CQDs@Mo2C

    更新于2025-11-14 17:03:37

  • Role of Yb3+ ion on the evaluation of energy transfer and cross-relaxation processes in Gd2Ce2O7: Yb3+, Er3+ phosphors

    摘要: Energy transfer (ET) and cross-relaxation (CR) processes play significant roles in regulating emitting colors and intensity of upconversion (UC) materials. Calculating the coefficients in ET and CR processes can provide visual descriptions for evaluating the UC luminescence properties. Here, we find that those ET and CR processes are responsible for the color-tunable properties in Gd2Ce2O7: Yb3+, Er3+ phosphors. By solving the rate equation, mathematical expressions are established to calculate the ET and CR coefficients based on the experimental UC spectra and lifetimes. The results are benefit to evaluate the efficiencies of ET and CR processes in quantization in different Yb3+ ion concentrations doped samples. The coefficients of ET process arise from 1.05 to 7.93 × 1017 cm3s?1 while those of CR process increase from 2.69 to 72.01 × 1017 cm3s?1 with increasing the Yb3+ ion concentration, which suggest that the CR and ET processes are efficient in Gd2Ce2O7 host. Furthermore, potential temperature sensing properties are also evaluated according to the fluorescence intensity ratio of 2H11/2 and 4S3/2 levels and the maximal sensitivity (S) is achieved about 0.00337 K?1 at 503 K. This work provides an insight into the evaluation of those UC processes and reveals the capacity in color-tunable and temperature sensing aspects.

    关键词: Upconversion,Mathematical expression,Cross-relaxation,Temperature sensing,Energy transfer

    更新于2025-11-14 17:03:37

  • Tricolor- and White Light–Emitting Ce <sup>3+</sup> /Tb <sup>3+</sup> /Mn <sup>2+</sup> -Coactivated Li <sub/>2</sub> Ca <sub/>4</sub> Si <sub/>4</sub> O <sub/>13</sub> Phosphor via Energy Transfer

    摘要: Single-component tunable Li2Ca4Si4O13:Ce3+,Tb3+,Mn2+ phosphors were successfully synthesized at 950 °C. Li2Ca4Si4O13:Ce3+,Tb3+ exhibits two luminescence peaking at 430 and 550 nm, which originated from the allowed 5d → 4f transition of the Ce3+ ion and the 5D4 → 7FJ (J = 6, 5, 4, 3) transition of the Tb3+ ion, respectively. Moreover, by codoping Ce3+ ions in the Li2Ca4Si4O13:Mn2+ system, yellow-red emission from the forbidden transition of Mn2+ could be enhanced. Under UV excitation, dual energy transfers (ETs), namely, Ce3+ → Mn2+ and Ce3+ → Tb3+, are present in the Li2Ca4Si4O13:Ce3+,Tb3+,Mn2+ system. The ET process was confirmed by the overlap of the excitation spectra, variations in the emission spectra, ET efficiency, and decay times of phosphors. In addition, quantum yields and CIE chromatic coordinates are presented. The emission color of these phosphors can be tuned precisely from blue to green via ET of Ce3+ → Tb3+ and from blue to yellow via ET of Ce3+ → Mn2+. White light can also be achieved upon excitation of UV light by properly tuning the relative composition of Tb3+/Mn2+. This result indicates that the developed phosphor may be regarded as a good tunable emitting phosphor for UV light-emitting diodes.

    关键词: phosphor,energy transfer,Mn2+,Tb3+,Li2Ca4Si4O13,Ce3+,white light-emitting diodes

    更新于2025-11-14 15:29:11

  • Erbium-to-dysprosium energy-transfer mechanism and visible luminescence in lead-cadmium-fluorogermanate glass excited at 405?nm

    摘要: Erbium-to-dysprosium energy-transfer and visible luminescence in the blue, green, yellow, red, and NIR is reported in PbGeO3:PbF2:CdF2 glass under 405 nm excitation. Absorption and excitation spectra were examined in the UV-VIS-IR spectral region. Emission showed a decrease in the Er3+ emissions around 520 and 545 nm when Dy3+ was added to the host matrix, while the Dy3+ emission around 576 nm (4F9/2 – 6H13/2) increased concomitantly. The recorded lifetime for Er3+ emissions also decreased, as Dy3+ concentration was increased for fixed Er3+ content. No similar behavior was observed when Er3+ concentration varied, confirming a one-way Er3+-to-Dy3+ energy transfer mechanism.

    关键词: glass,energy-transfer,visible-light,rare-earth

    更新于2025-11-14 15:25:21

  • Glutaraldehyde non-conjugated chitosan polymer fluorophores for selective determination of picric acid via fluorescence resonance energy transfer strategy

    摘要: Water-dispersed glutaraldehyde (GA) non-conjugated chitosan polymer fluorophores (GCPF) with quantum yield of 16 % is synthesized by stirring chitosan and GA for 6 h at room temperature in the present work. It is a facile and mild method and fluorescent GCPF can be stabled for two months. Owing to the spectral overlap of fluorescent spectrum of GCPF and absorption spectrum of picric acid (PA), a novel sensitive fluorescent method using fluorescent GCPF for PA detection from 10 nM to 50 μM via fluorescence resonance energy transfer (FRET) strategy is established. The distance between donor of GCPF and acceptor of PA (R0 value) is calculated to be 3.5 nm. FRET method using fluorescent GCPF possesses high sensitivity (LOD of 2.8 nM), and selectivity and fast response within 2 min. Moreover, fluorescent GCPF is also utilized in visual analysis of PA using cotton swabs. Fluorescence quenching effect can be observed by eyes irradiated with 365 nm ultraviolet light at cotton swabs and using GCPF solid on quartz glasses, which paves an effect and wide way for the application of fluorescent GCPF in our daily life.

    关键词: Glutaraldehyde non-conjugated chitosan polymer fluorophores (GCPF),picric acid (PA),fluorescence resonance energy transfer (FRET),glutaraldehyde (GA),chitosan

    更新于2025-11-14 15:23:50

  • A new disordered langbeinite-type compound, K <sub/>2</sub> Tb <sub/>1.5</sub> Ta <sub/>0.5</sub> P <sub/>3</sub> O <sub/>12</sub> , and Eu <sup>3+</sup> -doped multicolour light-emitting properties

    摘要: For the first time, a new langbeinite-type phosphate, namely potassium terbium tantalum tris(phosphate), K2Tb1.5Ta0.5(PO4)3, has been prepared successfully using a high-temperature flux method and has been structurally characterized by single-crystal X-ray diffraction. The results show that its structure can be described as a three-dimensional open framework of [Tb1.5Ta0.5(PO4)3] interconnected by K+ ions. The TbIII and TaV cations in the structure are disordered and occupy the same crystallographic sites. The IR spectrum, the UV–Vis spectrum, the morphology and the Eu3+-activated photoluminescence spectroscopic properties were studied. A series of Eu3+-doped phosphors, i.e. K2Tb1.5–xTa0.5(PO4)3:xEu3+ (x = 0.01, 0.03, 0.05, 0.07, 0.10), were prepared via a solid-state reaction and the photoluminescence properties were studied. The results show that under near-UV excitation, the luminescence colour can be tuned from green through yellow to red by simply adjusting the Eu3+ concentration from 0 to 0.1, because of the efficient Tb3+→Eu3+ energy-transfer mechanism.

    关键词: photoluminescence,Langbeinite-type phosphate,crystal structure,energy-transfer mechanism,multicolour light

    更新于2025-11-14 15:23:50

  • Quenched Sandwich-type Photoelectrochemical Aptasensor forProtein Detection based on Exciton Energy Transfer

    摘要: This work proposes a quenched photoelectrochemical sensing method for highly selective and sensitive detection of protein via Energy Transfer (ET) effect between the AuNPs and CdS:Mn quantum dots. This detection was performed on a sandwich-type aptamer sensing interface. Chitosan modified CdS:Mn/TiO2/ITO electrode was used to immobilize capture DNA (S1) via -CONH- bond. In the presence of target protein, AuNPs labeled DNA (AuNPs-S2) was further bonded to the protein to fabricate sandwich sensing platform, which forced the AuNPs away from the electrode surface. In this state, the photocurrent was greatly depressed, mainly due to two factors: (a) the ET effect produced by interparticle distance between CdS:Mn and AuNPs; (b) the steric hindrance of AuNPs-S2 partly obstructs the diffusion of the electron donor. The photocurrent decreased with the increasing concentration of the target protein. Using thrombin as a target, this sensitized method showed a detectable range of 0.1 pM to 8 nM and a detection limit of 30 fM. It possessed high selectivity and good stability for detection of thrombin. This method is extremely flexible and can be extended to varieties of protein targets.

    关键词: CdS:Mn,Photoelectrochemical aptasensor,Thrombin,Energy transfer,AuNPs

    更新于2025-11-14 15:15:56

  • Energy Transfer from Ce3+ to Tb3+ in Yttrium and Gadolinium Orthoborates Obtained by Hydrothermal Synthesis

    摘要: We studied the structure, IR absorption spectra, the spectral characteristics of photoluminescence and morphology of cerium- and terbium-doped orthoborates of gadolinium and yttrium obtained by hydrothermal synthesis at 200°C, as well as solid solutions of orthoborates on the basis of yttrium, gadolinium, and lutetium with composition RECe0.01Tb0.1BO3 (RE = Lu0.5Gd0.39, Lu0.5Y0.39, and Y0.5Gd0.39). The X-ray diffraction spectrum of yttrium orthoborate Y1 – x – yCexTbyBO3 is described by a hexagonal lattice with space group P63/m, which, after annealing at 970°C, transforms into a monoclinic lattice with space group C2/c. High-temperature annealing of the studied orthoborates leads to a multiple, more than two orders of magnitude, increase in the luminescence intensity of Tb3+ ions when the samples are excited in the absorption band of cerium ions. This effect is the result of a significant increase in the concentration of Ce3+ ions in the orthoborates at high temperatures. It is shown that the luminescence of terbium ions is due to energy transfer from Ce3+ to Tb3+, which proceeds with high efficiency (~85%) by the mechanism of dipole-dipole interaction between cerium and terbium.

    关键词: orthoborates,luminescence,Ce3+,hydrothermal synthesis,energy transfer,Tb3+

    更新于2025-11-14 15:14:40

  • Complementary Chromophore Decoration in NU-1000 via Solvent-Assisted Ligands Incorporation: Efficient Energy Transfer within the Metal-Organic Frameworks

    摘要: BODIPY-incorporated solvent-assisted ligand incorporation metal-organic frameworks (SALI-MOFs) were designed and synthesized using NU-1000 and carboxylic acid functionalized BODIPY moieties by the solvent-assisted ligand incorporation (SALI) approach. SALI-MOFs were characterized by various technique including powder X-ray diffraction, scanning electron microscope, N2 adsorption/desorption isotherms, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The SALI-MOFs were found to have cooperative light-harvesting properties and shown to possess efficient singlet oxygen (1O2) generation ability.

    关键词: Light-harvesting properties,Singlet oxygen,Metal-organic frameworks,Solvent-assisted ligands incorporation,Energy transfer,BODIPY

    更新于2025-11-14 15:14:40