修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

17 条数据
?? 中文(中国)
  • Monitoring of polycyclic aromatic hydrocarbon contamination at four oil spill sites using fluorescence spectroscopy coupled with parallel factor-principal component analysis

    摘要: Fluorescence spectroscopy analysis of oil and environmental samples collected from four oil spill incidents in Canada—a 2016 pipeline spill into the North Saskatchewan River (NSR), Saskatchewan; a 2015 train derailment in Gogama, Ontario; the 1970 sinking of the SS Arrow ship in Chedabucto Bay, Nova Scotia; and the 1970 sinking of the Irving Whale barge in the Gulf of St. Lawrence—permitted assessment of the PAH content of environmentally weathered samples. A recently developed fluorescence fingerprinting model based on excitation–emission matrix-parallel factor analysis-principal component analysis (EEM-PARAFAC-PCA) was applied to (i) evaluate the intensity of the abundant PAH groups in the samples, (ii) investigate changes in the PAH composition of environmental samples over time due to weathering, and (iii) classify the original spilled oil and environmental samples within the already established classes of the fingerprinting PCA model. The environmental sediment samples collected from the Husky Energy spill site show loss of PAHs occurring over the course of 15 months post-spill. However, the extent of weathering depends on several environmental factors rather than solely the time of weathering, the PAH loss was maximum at 15 months. There was a decrease in the PAH content of the environmental samples of Gogama spill collected 20 months post-spill. Almost all of Gogama environmental sediment samples underwent substantial weathering, making PCA classification impractical. The SS Arrow and Irving Whale samples fell within adjacent PCA groups, as they both had a similar type of spilled oil (Bunker C) with similarity in chemical composition.

    关键词: EEM-PARAFAC-PCA,fluorescence spectroscopy,environmental monitoring,oil spill,PAH contamination

    更新于2025-11-19 16:56:42

  • [IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Clear-Air Anomaly Detection Using Modified Kalman Temporal Filter from Geostationary Multispectral Data

    摘要: A multispectral temporal-based remote sensing technique based on a modified Kalman filter is presented for clear-air detection by using Geostationary visible-infrared radiometric passive measurements. The Kalman estimate relies on a model of the daily measurement cycle of the considered pixel in clear-sky conditions. If the measurement significantly deviates from the predicted value, an anomaly is detected, which is interpreted as a non-clear air scenario. The add-on value of such approach is to be able to provide a-priori estimates, making the algorithm applicable in a global way. The Meteosat Second Generation satellite has been used over a large sample area in West Africa and a test period of three months. An inter-comparison with respect to the EUMETSAT cloud mask product has been carried out showing promising results in terms of detecting clear-air scenarios and percentages of matching around 90% over the entire period.

    关键词: Geostationary Visible-Infrared satellite measurements,clear-air detection,Kalman filtering,environmental monitoring,Global-scale analysis

    更新于2025-09-23 15:22:29

  • Camera sensor-based contamination detection for water environment monitoring

    摘要: Water environment monitoring is of great importance to human health, ecosystem sustainability, and water transport. Unlike traditional water quality monitoring problems, this paper focuses on visual perception of water environment. We first introduce the development of a customized aquatic sensor node equipped with an embedded camera sensor. Based on this platform, we present an efficient and holistic contamination detection approach, which can automatically adapt to the detection of floating debris in dynamic waters or the identification of salient regions in static waters. Our approach is specifically designed based on compressed sensing theory to give full consideration to the unique challenges in water environment and the resource constraints on sensor nodes. Both laboratory and field experiments demonstrate the proposed method can fast and accurately detect various types of water pollutants and is a better choice for camera sensor-based water environment monitoring compared with other methods.

    关键词: Contamination detection,Camera sensor,Compressed sensing,Environmental monitoring

    更新于2025-09-23 15:21:21

  • [Sustainable Development Goals Series] Remote Sensing for Food Security || Application of Vegetation Health Data and Products for Monitoring Food Security

    摘要: The year 2018. Almost one-fifth of the twenty-first century has already past and the Earth has still been continuing the previous tendencies for a rapid population growth, declining stock of natural resources, climate warming, land cover changes, increasing natural disasters, etc., which have intensified considerably world’s concerns about the future food supply/demand and global food security (USDA 2017; FAO 2017, 1999; Heibuch 2011). Most of the indicated problems are related to a deterioration of environmental conditions. As has never been before, decision makers of the world, countries, communities, international organizations, and businesses need reliable and timely information to understand, monitor, and predict impacts of weather/climate and environmentally based Earth’s changes on global food security (FS).

    关键词: Environmental Monitoring,Food Security,Vegetation Health,Drought Monitoring,Satellite Data

    更新于2025-09-23 15:21:01

  • Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics

    摘要: Bioelectronics for healthcare that monitor the health information on users in real time have stepped into the limelight as crucial electronic devices for the future due to the increased demand for “point-of-care” testing, which is defined as medical diagnostic testing at the time and place of patient care. In contrast to traditional diagnostic testing, which is generally conducted at medical institutions with diagnostic instruments and requires a long time for specimen analysis, point-of-care testing can be accomplished personally at the bedside, and health information on users can be monitored in real time. Advances in materials science and device technology have enabled next-generation electronics, including flexible, stretchable, and biocompatible electronic devices, bringing the commercialization of personalized healthcare devices increasingly within reach, e.g., wearable bioelectronics attached to the body that monitor the health information on users in real time. Additionally, the monitoring of harmful factors in the environment surrounding the user, such as air pollutants, chemicals, and ultraviolet light, is also important for health maintenance because such factors can have short- and long-term detrimental effects on the human body. The precise detection of chemical species from both the human body and the surrounding environment is crucial for personal health care because of the abundant information that such factors can provide when determining a person’s health condition. In this respect, sensor applications based on an organic-transistor platform have various advantages, including signal amplification, molecular design capability, low cost, and mechanical robustness (e.g., flexibility and stretchability).

    关键词: organic transistor-based chemical sensors,health monitoring,wearable bioelectronics,environmental monitoring,point-of-care testing

    更新于2025-09-23 15:21:01

  • State-of-the-Art Laser Gas Sensing Technologies

    摘要: The increasing desire to detect and monitor in different fields such as in environmental air, life sciences, medical diagnostics, and planetary exploration demand the development of innovative sensing systems. Laser spectroscopy-based techniques have the advantages of high sensitivity, non-invasiveness and in situ, real-time observation. Because of these merits, we introduced state-of-the-art laser gas sensing technologies in this Special Issue. A total of 30 papers was received for consideration of publication. Among them, six manuscripts were rejected by the editor in the initial check process without peer review. The remaining manuscripts were all reviewed by at least two reputed reviewers in related fields from the USA, France, Italy, Germany, Russia, and so on. Finally, 16 manuscripts were accepted for publication in Applied Sciences-Basel. We would like to thank all of these numerous reviewers for their effort.

    关键词: laser gas sensing,environmental monitoring,spectroscopy,medical diagnostics,planetary exploration

    更新于2025-09-23 15:19:57

  • [IEEE 2019 13th International Conference on Sensing Technology (ICST) - Sydney, Australia (2019.12.2-2019.12.4)] 2019 13th International Conference on Sensing Technology (ICST) - Design and Development of an IoT enabled Pedestrian Counting and Environmental Monitoring System for a Smart City

    摘要: A novel method for pedestrian counting using passive infrared (PIR) sensors is proposed and the corresponding system has been designed and developed. The inclusion of an environmental combo sensor in the proposed pedestrian counting system enabled environmental monitoring such as temperature, humidity, pressure, Carbon di Oxide (CO2) and Total Volatile Organic Component (TVOC). The detection lengths of the PIR sensors are varied by tuning the Field of View (FoV) of the Fresnel lens to differentiate the movements of humans and animals. A novel method is applied to locate the PIR sensors in the designed mould so that their coverage regions do not overlap. The sensor data are transmitted to the Thingspeak server via Long Range Wide Area Network (LoRaWAN) communication protocol. The system is powered by a 6000 mAh rechargeable battery which is charged by the solar panel during day time enabling continuous data collection. The system’s results are validated against manual counting and it is seen that more than 90% accuracy can be achieved by this intelligent system.

    关键词: PIR sensors,pedestrian count,environmental monitoring,smart city,FoV

    更新于2025-09-23 15:19:57

  • [IEEE IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium - Yokohama, Japan (2019.7.28-2019.8.2)] IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium - Integrated Micro-Photonics for Remote Earth Science Sensing (Impress) Lidar

    摘要: We present recent progress on a wavelength tunable, pulsed laser source for laser spectroscopy of CO2 at 1572 nm. An integrated photonics design in indium phosphide (InP) is presented and compared to a fiber-component-based implementation. Significant improvement in size, weight and complexity is demonstrated.

    关键词: photonics,remote sensing,Lasers,environmental monitoring

    更新于2025-09-12 10:27:22

  • Laser-induced fluorescence (LIF) as a smart method for fast environmental virological analyses: validation on Picornaviruses

    摘要: Virological analysis is time-consuming and expensive. The aim of this work is to demonstrate the applicability of laser-induced fluorescence (LIF) to the classification of viruses, reducing the time for this analysis and its costs. Experimental tests were performed in which different viruses were irradiated with a UV laser emitting at 266 nm and the emitted spectra were recorded by a spectrometer. The classification techniques show the possibility of discriminating viruses. Although the application of the LIF technique to biological agents has been thoroughly studied by many researchers over the years, this work aims at validating for the first time its applicability to virological analyses. The development of a fast virological analysis may revolutionize this field, allowing fast responses to epidemiologic events, reducing their risks and improving the efficiency of monitoring environments. Moreover, a cost reduction may lead to an increase in the monitoring frequency, with an obvious enhancement of safety and prevention.

    关键词: Laser-induced fluorescence,environmental monitoring,virological analyses,virus classification

    更新于2025-09-11 14:15:04

  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Compact Photoacoustic Spectrometer Based on a Widely Tunable Mid-Infrared Pulsed Optical Parametric Oscillator

    摘要: For highly sensitive and selective photoacoustic (PA) trace-gas sensing it is desirable to use high power light sources with large wavelength tunability in the mid-infrared (MIR) region, where most molecules have strong vibrational transitions. The OPO technology is an old technology, but still an excellent choice as light source for PA spectroscopy. The advantages are their molecular specificity due to large wavelength tunability (1.5 to 5μm), high energy output, cost-effectiveness and compactness [1]. The tunability of OPOs together with PA allow for multi-gas detection of several components with common signal processing and data analysis. MIR OPOs can operate in different configurations both pulsed and continuous wave (CW). The pulsed operation results in high peak power, potentially nonlinear absorption effects and a normalized noise equivalent absorption that is not extreme. We demonstrate a novel miniaturized PA trace gas analyzer platform integrated with a MIR OPO targeting the major market opportunity of environmental monitoring and breath analysis [2,3]. We demonstrate that a miniaturized photoacoustic spectroscopic (PAS) cell can be excited resonantly with the MIR OPO by adjusting the laser pulse repetition rate to match the acoustic resonance of the PAS cell. The application of the gas sensor for real time environmental measurements and breath analysis is demonstrated using three samples of gas concentration; 100 ppmV of methane (CH4), 100 ppmV of nitrogen dioxide (NO2), and approximately 1000 ppmV ammonia (NH3) in atmospheric air with a humidity of 40% [3]. A gas flow rate of 300 ml/min through the PAS cell was applied for the three samples. These gases are well-known environmental trace gases and biomarkers in exhaled breath. The gases cause environmental degradation through their effects on soil acidification, eutrophication, and stratospheric ozone depletion. The presence of ammonia in the environment is mainly due to the degradation of animal waste, industrial processes and diesel exhaust. NO2 is a toxic gas and a regulated air pollutant that possess a serious risk for human health. Monitoring them in human breath is also particularly relevant as they are potential cancer biomarkers. We acknowledge the financial support from EUREKA (Eurostars program: E10589 - PIRMAH) and the Danish Agency for Higher Education.

    关键词: photoacoustic spectroscopy,optical parametric oscillator,breath analysis,trace-gas sensing,mid-infrared,environmental monitoring

    更新于2025-09-11 14:15:04