- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
G‐C3N4‐SiC‐Pt for Enhanced Photocatalytic H2 Production from Water under Visible Light Irradiation
摘要: The g-C3N4 and SiC has drawn increasing attention for application to visible light photocatalytic hydrogen evolution from water splitting due to their unique band structure and high physicochemical stability. In this study, g-C3N4-SiC heterojunction with loaded noble metal was constructed. The g-C3N4-SiC-Pt composite photocatalysts were successfully prepared by the combination method of a bio-reduction, sol-deposition and calcination. The layers of g-C3N4 were thinned and the SiC and Pt nanoparticles simultaneously were tightly bound to g-C3N4 by calcination in the process of preparing the g-C3N4-SiC-Pt. The heterojunction formed in the interface of SiC and g-C3N4 enhances the separation efficiency of the photogenerated electron-hole pairs. These composite photocatalysts achieve a high hydrogen evolution rate of 595.3 μmol·h-1·g-1 with a 1wt% of deposited Pt, 3.7- and 2.07-fold higher than g-C3N4-bulk and g-C3N4-SiC under visible-light irradiation with a quantum efficiency of 2.76% at 420 nm, respectively.
关键词: visible light,g-C3N4-SiC-Pt photocatalysts,hydrogen evolution,photocatalysis
更新于2025-11-21 11:01:37