修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

22 条数据
?? 中文(中国)
  • P‐type Sb‐doped Cu <sub/>2</sub> O Hole Injection Layer Integrated on Transparent ITO Electrode for Acidic PEDOT:PSS‐Free Quantum Dot Light Emitting Diodes

    摘要: It is developed that transparent p-type Sb-doped cuprous oxide (ACO) integrated Sn-doped In2O3 (ITO) film as hole injection layer (HIL) and anode combined electrodes for quantum dot light emitting diodes (QD-LEDs) to substitute acidic PEDOT:PSS HIL based electrode. By graded co-sputtering of ACO and ITO targets, the graded p-type ACO buffer layer can be integrated on the surface region of the ITO electrodes. P-type conductivity of the ACO film for acting as effective HIL in QD-LEDs is confirmed by a positive Hall coefficient (1.74 (cid:1) 10 (cid:3)1). Due to the well-matched work function of p-type ACO on the ITO electrodes, the acidic PEDOT:PSS-free QD-LEDs exhibited typical current-voltage-luminescence of QD-LEDs. The successful operation of PEDOT:PSS-free QD-LED with p-type ACO integrated ITO electrode indicates that ACO and ITO anode graded sputtering is simpler fabrication steps for cost-effective QD-LEDs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable QD-LEDs.

    关键词: Sn-doped In2O3,acidic PEDOT:PSS,hole injection layer,p-type conductivity,Sb-doped Cu2O,quantum dots light emitting diodes

    更新于2025-11-21 10:59:37

  • Sol-gel processed vanadium oxide as efficient hole injection layer in visible and ultraviolet organic light-emitting diodes

    摘要: Low-cost, high-throughput and scalable production currently boosts organic electronic device towards solution processing. Sol-gel processed aqueous vanadium oxide (h-VOx) is facilely synthesized and proven to be efficient hole injection layer (HIL) in visible and ultraviolet organic light-emitting diodes (OLEDs). Atomic force microscopy and X-ray/ultraviolet photoelectron spectroscopy measurements indicate that h-VOx behaves superior film morphology and exceptional electronic properties such as oxygen vacancy dominated non-stoichiometry and appropriate surface work function. With tris(8-hydroxy-quinolinato)aluminium as emitter, the visible OLED gives maximum luminous and power efficiencies of 6.3 cd/A and 3.2 lm/W, respectively, which are slightly superior to the counterpart with vacuum thermally-evaporated VOx (5.6 cd/A and 2.7 lm/W). With 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole as emitter, the ultraviolet OLED produces attractive short-wavelength emission of 379 nm with full width at half maximum of 40 nm and improved durability. The maximum radiance and external quantum efficiency reach 15.3 mW/cm2 and 2.92%, respectively, which are considerably enhanced in comparison with the corresponding reference (11.9 mW/cm2 and 2.32%). Current versus voltage characteristics and impedance spectroscopy analysis elucidate that h-VOx exhibits robust hole injection and accordingly high-performance OLEDs. Our results pave an alternative way for advancing organic electronic devices and VOx applications with solution process.

    关键词: Organic light-emitting diode,Hole injection,Solution process,Vanadium oxide,Sol-gel method

    更新于2025-11-20 15:33:11

  • Carrier Transport Mechanisms Underlying the Bidirectional VTH Shift in p-GaN Gate HEMTs Under Forward Gate Stress

    摘要: The threshold voltage (VTH) instability of p-GaN/AlGaN/GaN HEMTs was investigated under forward gate stress. A unique bidirectional VTH shift (ΔVTH) with the critical gate voltage (VG) of 6 V was observed. The carrier transport mechanisms underlying the ΔVTH were extensively investigated through the voltage-dependent, time-resolved, and temperature-dependent gate current. The gate current is decomposed into electron and hole current in three distinct regions with respect to VG, which are off-state for VG < 1.2 V (VTH), on-state for 1.2 V < VG < 5 V and “gate-injected” region for VG > 5 V. In off-state, the electrons were thermally activated and transport towards the gate, while electron-trapping governed by the space charge limited conduction (SCLC) in AlGaN barrier was observed in on-state and “gate-injected” region. Such an electron-trapping effect results in the positive VTH shift for VG < 6 V. Meanwhile, the marginal hole transport from gate by thermal activation was also captured by gate current, which features negligible impact on VTH. However, for VG > 6 V, a drastic hole injection triggered by high VG takes place that causes subsequent hole-trapping in AlGaN barrier and hole-injection into GaN buffer. The injected holes enhance the positive charge in the gate region and turned the positively shifted VTH into a negative shift.

    关键词: hole injection,threshold voltage shift,p-GaN HEMT,electron trapping,carrier transport mechanisms,gate stress

    更新于2025-09-23 15:22:29

  • [SpringerBriefs in Applied Sciences and Technology] Air-Stable Inverted Organic Light-Emitting Diodes || Carrier Injection Mechanism

    摘要: Both hole and electron injection layers are commonly used in recent OLEDs to reduce the injection barrier between electrodes and organic layers. This injection barrier originates from the energy difference between the work function (WF) of the electrode and the energy level of the organic layer. For instance, the hole injection barrier is defined as the energy difference between the Fermi level of the anode and the highest occupied molecular orbital (HOMO) level of the organic layer on the anode, as shown in Fig. 4.1a. Thus, an ideal hole injection material is the material that can make the surface WF of the anode larger (Fig. 4.1b). On the other hand, an ideal electron injection material is the material that can make the surface WF of the cathode smaller (Fig. 4.1c).

    关键词: energy level alignment,OLEDs,electron injection,hole injection,work function

    更新于2025-09-23 15:21:01

  • Large Performance Enhancement in All-Solution-Processed, Full-Color, Inverted Quantum Dot Light-Emitting Diodes by Using Graphene Oxide-Doped Hole Injection Layer

    摘要: Solution-processed hole injection layers (HILs) for full-color, inverted quantum dot light-emitting diodes (QLEDs) are developed by simply incorporating the graphene oxide (GO) into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The excellent wettability of the GO-doped PEDOT:PSS mixture facilitates the effective deposition of HIL onto the organic underlayer. Ultraviolet photoelectron spectroscopy and Raman spectroscopy characterization reveal that the GO-doped PEDOT:PSS HIL possesses the advantages of increased work function and improved conductivity. Thus, the GO-doped PEDOT:PSS HIL can promote hole injection from the top anode into the device by reducing the hole injection barrier and sheet resistance. As a result, by using the GO-doped PEDOT:PSS HIL, we have successfully demonstrated highly bright all-solution-processed, full-color, inverted QLEDs showing remarkably enhanced luminance of 142165, 63318, and 3019 cd/m2 for green, red, and blue devices, respectively. To the best of our knowledge, the green device’s luminance is the best for all-solution-processed inverted green QLEDs. These results suggest that the GO-doped PEDOT:PSS is a promising candidate for high-quality HIL in all-solution-processed QLEDs with an inverted structure.

    关键词: Optical,Quantum Dot Light-Emitting Diodes,Hole Injection Layer,Plasmonics,Magnetic,Hybrid Materials,Graphene Oxide,PEDOT:PSS

    更新于2025-09-23 15:21:01

  • Enhancing the performance of LARP-synthesized CsPbBr <sub/>3</sub> nanocrystal LEDs by employing a dual hole injection layer

    摘要: Lead halide perovskites have been considered promising materials for optoelectronic applications owing to their superior properties. CsPbBr3 nanocrystals (NCs) with a narrow particle size distribution and a narrow emission spectrum are synthesized by ligand-assisted re-precipitation (LARP), a low-cost and facile process. In inverted CsPbBr3 NC LEDs, a dual hole injection layer (HIL) of 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN)/MoO3 is introduced to enhance hole injection and transport, because HAT-CN can extract electrons easily from the hole transport layer and leave a large number of holes there. The current and power efficiencies of the optimized device with a dual HIL are 1.5- and 1.8-fold higher than those of the single HIL device. It is believed that the dual HAT-CN/MoO3 HIL effectively promotes hole injection and has promise for application in many other devices.

    关键词: Ligand-assisted re-precipitation,Optoelectronic applications,Lead halide perovskites,CsPbBr3 nanocrystals,Dual hole injection layer,HAT-CN/MoO3

    更新于2025-09-23 15:21:01

  • Effects of Parasitic Region in SiC Bipolar Junction Transistors on Forced Current Gain

    摘要: Effects of a parasitic region in SiC BJTs on conductivity modulation and a forced current gain (????) were investigated by using TCAD simulation with various device structures. By introducing an Al+-implanted region below the base parasitic region, ???? can be improved because the implanted region can reduce the base spreading resistance, leading to alleviation of debiasing effect. ???? in devices with various parasitic areas, whose base spreading resistances were reduced by the Al+-implantation, were compared. We found that ???? can be enhanced by expanding the parasitic area if the base spreading resistance is sufficiently reduced. The higher ???? is attributed to an expanded conductivity-modulated region. The collector current spreading in the collector layer and hole injection from the parasitic region as well as from the intrinsic region can play a role to evoke conductivity modulation. Thus, the larger parasitic region can expand the conductivity-modulated region, which results in expansion of an active area and the enhancement of ????, though a higher base voltage is required.

    关键词: forced current gain,conductivity modulation,parasitic region,hole injection,SiC BJT,base spreading resistance

    更新于2025-09-23 15:21:01

  • Recent development of soluble hole injection material for OLED display

    摘要: We developed soluble hole injection materials and inks, named ELsource, that can be used as hole injection layer in organic light-emitting diode (OLED) display. OLED is an optical device. Therefore, we developed the hole injection materials with optical properties necessary for an optical device.

    关键词: refractive index,optical property,printable OLED,flexible,HIL,hole injection layer,soluble,hole injection material,adhesion,HIM

    更新于2025-09-23 15:19:57

  • Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells

    摘要: An AlGaN-based deep ultraviolet laser diode with convex quantum wells structure is proposed. The advantage of using a convex quantum wells structure is that the radiation recombination is significantly improved. The improvement is attributed to the increase of the effective barrier height for electrons and the reduction of the effective barrier height for holes, which results in an increased hole injection efficiency and a decreased electron leakage into the p-type region. Particularly, comparisons with the convex quantum barriers structure and the reference structure show that the convex quantum wells structure has the best performance in all respects.

    关键词: AlGaN,radiation recombination,convex quantum wells,electron leakage,deep ultraviolet laser diode,hole injection efficiency

    更新于2025-09-23 15:19:57

  • 31.4: <i>Invited Paper:</i> Recent Development of Soluble Hole Injection Material for Printed OLED and QLED Display

    摘要: We are developing the soluble hole injection materials and the inks, named ELsource? that can be used as hole injection layer in OLED display. OLED display is one of optical device. Therefore, we developed the hole injection materials with optical properties necessary for that optical devices. We also developed the hole injection material with the deeper ionization potential applicable to QLED display.

    关键词: Hole injection layer,Ionization potential,HIL,Refractive index,HIM,Printed,OLED,Optical property,Hole injection material,QLED,Soluble

    更新于2025-09-19 17:13:59