- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[Lecture Notes in Computer Science] Hybrid Metaheuristics Volume 11299 (11th International Workshop, HM 2019, Concepción, Chile, January 16–18, 2019, Proceedings) || Optimization of the Velocity Profile of a Solar Car Used in the Atacama Desert
摘要: Global energy demand has undergone a substantial increase in past decades because of the rapid increase of the global population and the energetic consumption of new production technologies. As a result, a change is necessary in the global energy generating matrix, in which the sources originate primarily from renewable energy sources. The main renewable energy source may be solar energy, and one of its applications is solar mobility. A world-class solar racing car exists that requires a rational use of velocity and energy to minimize the time spent in a race. A total of three search metaheuristics were tested to achieve an efficient velocity profile for this car in the Atacama 2018 Solar Race: Genetic Algorithm, Simulated Annealing and Iterated Local Search. The three methods provided similar results, with Simulated Annealing being the one that provided better solutions.
关键词: Metaheuristics,Energy management,Solar competition,Hybrid electric vehicle
更新于2025-09-23 15:23:52
-
A Novel Charging and Discharging Algorithm of Plug-in Hybrid Electric Vehicles Considering Vehicle-to-Grid and Photovoltaic Generation
摘要: Considering, the high penetration of plug-in electric vehicles (PHEVs), the charging and discharging of PHEVs may lead to technical problems on electricity distribution networks. Therefore, the management of PHEV charging and discharging needs to be addressed to coordinate the time of PHEVs so as to be charged or discharged. This paper presents a management control method called the charging and discharging control algorithm (CDCA) to determine when and which of the PHEVs can be activated to consume power from the grid or supply power back to grid through the vehicle-to-grid technology. The proposed control algorithm considers fast charging scenario and photovoltaic generation during peak load to mitigate the impact of the vehicles. One of the important parameters considered in the CDCA is the PHEV battery state of charge (SOC). To predict the PHEV battery SOC, a particle swarm optimization-based artificial neural network is developed. Results show that the proposed CDCA gives better performance as compared to the uncoordinated charging method of vehicles in terms of maintaining the bus voltage profile during fast charging.
关键词: state of charge,artificial neural network,particle swarm optimization,plug-in hybrid electric vehicle,charging and discharging control algorithm
更新于2025-09-16 10:30:52
-
Impacts on the Output Power of Photovoltaics on Top of Electric and Hybrid Electric Vehicles
摘要: This paper investigates the potential output power of a photovoltaic (PV) installation on top of battery-powered electric vehicles (BEVs) and hybrid electric vehicles (HEVs). Firstly, we discuss the available area on the roof of BEVs and HEVs for deploying PV cells. Secondly, we verify the impact of the vehicles curved roof surface on the available output power of photovoltaics. More precisely, we present a method of calculating the effective area of PV cells, useful for PV simulation models and calculating the available output power of PV cells with different longitudinal angles. We verify our method within experiments and present the results of them, showing that the model predicts the output power of PV cells with an accuracy better than 2.5%. Furthermore, we discuss the impact of the curved surface and ambient conditions on possible interconnections of PV cells. Here, we present considerations for both, stationary and moving conditions, to highlight the dif?culties for interconnecting PV cells to form PV panels. From our experimental results, for frequent changes in the available solar radiation level, we can see a difference in terms of output power larger than 75% between series and parallel interconnections of PV cells.
关键词: battery-powered electric vehicle,photovoltaic energy,solar energy,simulation,data acquisition,measurement,environmental data,hybrid electric vehicle
更新于2025-09-12 10:27:22
-
[IEEE 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) - Auckland, New Zealand (2019.5.20-2019.5.23)] 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) - Calculating the Output Power of Photovoltaic Cells on Top of Electric and Hybrid Electric Vehicles
摘要: This paper investigates the potential output power of a photovoltaic (PV) installation on top of battery-powered electric vehicles (BEVs) and hybrid electric vehicles (HEVs). Firstly, we discuss the available area on the roof of BEVs and HEVs for deploying PV cells. Secondly, we verify the impact of the curved surface on the available output power of photovoltaics. Furthermore, we discuss the impact of the curved surface and the ambient conditions on the possible alignment of PV cells. Here, we present a method of calculating the effective area of PV cells, useful for PV simulation models and calculating the available output power of PV cells with different longitudinal angles. Finally, we verify our method within experiments and present the results of them, showing that the model predicts the output power of PV cells with an accuracy better than 2.5%.
关键词: data acquisition,solar energy,environmental data,simulation,battery-powered electric vehicle,photovoltaic energy,measurement,hybrid electric vehicle
更新于2025-09-11 14:15:04
-
[IEEE 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) - Auckland, New Zealand (2019.5.20-2019.5.23)] 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) - Moving Photovoltaic (PV) Installations: Impacts of the Solar Radiation Level on the Output Power
摘要: This paper investigates the potential output power of moving photovoltaic (PV) installations. In particular, we focus on the impacts of the solar radiation level on the available output power of PV installations on top of moving objects. We discuss the situation for controlling the operating voltage of photovoltaics installed on top of battery-powered electric vehicles (BEVs) and hybrid electric vehicles (HEVs). We demonstrate that different longitudinal angles of PV cells due to curved roof surfaces and the fast slopes of the solar radiation level have a significant impact on the maximum power point tracking (MPPT) algorithm. We illustrate how the solar radiation level can reduce the efficiency of the MPPT algorithms.
关键词: data acquisition,photovoltaic energy,battery-powered electric vehicle,measurement,hybrid electric vehicle
更新于2025-09-11 14:15:04