修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Facile synthesis approach for core-shell TiO2–CdS nanoparticles for enhanced photocatalytic H2 generation from water

    摘要: With the ambition to design a cost-effective and highly stable photocatalyst with improved photocatalytic activity towards H2 generation by water splitting, herein we report a two-step facile synthesis approach for core-shell structure of TiO2-CdS nanocomposites. The synthesized photocatalysts are comprehensively characterized by SEM, XRD, BET, UV-vis DRS, Photoluminescence and XPS to investigate the morphological, crystalline, structural, optical properties and surface analysis. The photocatalytic activity is evaluated by measuring the ability of TiO2-CdS to generate H2 gas by water splitting in the presence of hole scavengers under simulated solar light at AM 1.5G conditions. Our optimized sample TiO2-CdS (3:2) exhibited an enhanced photocatalytic activity by generating 954 μmol g-1 h-1 of hydrogen which is ~1.4 and ~1.7 times higher than pure CdS nanoparticles and pure TiO2, respectively. The optimized sample achieved an apparent quantum efficiency of 3.53% along with good stability by generating a similar amount of H2 for 40 consecutive hours. The enhanced photocatalytic activity and stability of the core-shell TiO2-CdS nanocomposite is attributed to the broader solar spectrum absorption, efficient photo-induced charge separation on the interface of TiO2-CdS due to the formation of heterojunction and high surface area with a large fraction of mesopores.

    关键词: Photocatalytic H2 generation,Core-Shell TiO2-CdS nanocomposite,hydrothermal approach,CdS nanoparticles,Heterojunction

    更新于2025-09-23 15:21:21

  • The synthesis of Co <sub/>x</sub> Ni <sub/>1?x</sub> Fe <sub/>2</sub> O <sub/>4</sub> /multi-walled carbon nanotube nanocomposites and their photocatalytic performance

    摘要: A series of CoxNi1?xFe2O4/multi-walled carbon nanotube (CoxNi1?xFe2O4/MWCNTs) nanocomposites as photocatalysts were successfully synthesized, where CoxNi1?xFe2O4 was synthesized via a one-step hydrothermal approach. Simultaneously, methylene blue (MB) was used as the research object to investigate the catalytic effect of the catalyst in the presence of hydrogen peroxide (H2O2). The results showed that all the photocatalysts exhibited enhanced catalytic activity compared to pure ferrite. In addition, compared with the other photocatalysts, the reaction time was greatly shortened a significantly higher removal rate was achieved using 3-CNF/MWCNTs. There was no significant decrease in photodegradation efficiency after three catalytic cycles, suggesting that CoxNi1?xFe2O4/MWCNTs are recyclable photocatalysts for wastewater treatment. Our results indicate that the CoxNi1?xFe2O4/MWCNT composite can be effectively applied for the removal of organic pollutants as a novel photocatalyst.

    关键词: methylene blue,photocatalysts,hydrothermal approach,wastewater treatment,multi-walled carbon nanotube,hydrogen peroxide,CoxNi1?xFe2O4

    更新于2025-09-16 10:30:52

  • Highly Uniform Hollow GdF3 Ellipsoids: Controllable Synthesis, Characterization and Up-Conversion Luminescence Properties

    摘要: In this paper, the hollow GdF3 ellipsoids were successfully synthesized through a facile hydrothermal approach. The results indicated that the as-obtained GdF3 sample has an orthorhombic structure and the average length and diameter of the hollow ellipsoids are 750 nm and 350 nm, respectively. The possible formation mechanism of the hollow GdF3 ellipsoids has been presented. The up-conversion (UC) luminescence properties of the hollow GdF3: Yb3+/Ln3+ (Ln3+ = Er3+, Tm3+, Ho3+) ellipsoids were systematically investigated, which showed green (Er3+, 4S3/2, 2H11/2 → 4I15/2), blue (Tm3+, 1G4 → 3H6), and green (Ho3+, 5S2 → 5I8) luminescence under 980 nm NIR excitation, respectively. Furthermore, the UC white light was successfully obtained in the GdF3: Yb3+/Er3+/Tm3+ sample through adjusting relative doping concentration of Yb3+, Er3+ and Tm3+ ions. These findings may reveal potential applications in the fields of laser, bioanalysis, optoelectronic and nanoscale devices due to multicolor emissions in the visible region.

    关键词: Hollow Ellipsoids,Up-Conversion,Hydrothermal Approach,Gadolinium

    更新于2025-09-10 09:29:36