修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

过滤筛选

出版时间
  • 2019
  • 2018
研究主题
  • infrared image
  • target detection
  • lucas–kanade method (LK)
  • local contrast method (LCM)
  • facet model
  • target detection
  • zero-crossing point
  • Image processing
  • Infrared camera
  • Eye movement
应用领域
  • Optoelectronic Information Science and Engineering
机构单位
  • Chinese Academy of Sciences
  • Gunma University
  • University of Chinese Academy of Science
  • Xi’an Institute of Optics and Precision Mechanics Chinese Academy of Science
  • University of Science and Technology of China
  • Space Star Technology Co. LTD
1269 条数据
?? 中文(中国)
  • Near-infrared (NIR) surface-enhanced Raman spectroscopy (SERS) study of novel functional phenothiazines for potential use in dye sensitized solar cells (DSSC)

    摘要: Near-infrared (NIR) surface-enhanced Raman spectroscopy (SERS) is used to investigate the interaction between six novel phenothiazine-merocyanine dyes containing the three different functional groups rhodanine, 1,3-indanedione and cyanoacylic acid with plasmonic nanomaterials, to decide if the incorporation of plasmonic nanoparticles could enhance the efficiency of a Gr?tzel-type solar cell. The studies were carried out in the solution state using spherical and rod-shaped gold nanostructures. With KCl induced agglomerated spherical gold nanoparticles, forming SERS hot spots, the results showed low detection limits between 0.1 mmol L?1 for rhodanine containing phenothiazine dyes, because of the formation of Au–S bonds and 3 mmol L?1 for cyanoacrylic acid containing dyes, which formed H-aggregates in the watery dispersion. Results with gold nanorods showed similar trends in the SERS measurements with lower limits of detection, because of a shielding effect from the strongly-bound surfactant. Additional fluorescence studies were carried out to determine if the incorporation of nanostructures leads to fluorescence quenching. Overall we conclude that the addition of gold nanoparticles to rhodanine and 1,3-indanedione containing phenothiazine merocyanine dyes could enhance their performance in Gr?tzel-type solar cells, because of their strong interactions with plasmonic nanoparticles.

    关键词: surface-enhanced Raman spectroscopy,plasmonic nanoparticles,dye sensitized solar cells,phenothiazine-merocyanine dyes,Near-infrared

    更新于2025-11-14 15:16:37

  • Anisotropic infrared light emission from quasi-one-dimensional layered TiS<sub>3</sub>

    摘要: Atomically thin semiconductors hold great potential for nanoscale photonic and optoelectronic devices because of their strong light absorption and emission. Despite progress, their application in integrated photonics is hindered particularly by a lack of stable layered semiconductors emitting in the infrared part of the electromagnetic spectrum. Here we show that titanium trisulfide (TiS3), a layered van der Waals material consisting of quasi-one-dimensional chains, emits near infrared light centered around 0.91 eV (1360 nm). Its photoluminescence exhibits linear polarization anisotropy and an emission lifetime of 210 ps. At low temperature, we distinguish two spectral contributions with opposite linear polarizations attributed to excitons and defects. Moreover, the dependence on excitation power and temperature suggests that free and bound excitons dominate the excitonic emission at high and low temperatures, respectively. Our results demonstrate the promising properties of TiS3 as a stable semiconductor for optoelectronic and nanophotonic devices operating at telecommunication wavelengths.

    关键词: infrared luminescence,transition metal trichalcogenides,titanium trisulfide,linear polarization anisotropy,layered semiconductors

    更新于2025-11-14 14:32:36

  • AlN-based hybrid thin films with self-assembled plasmonic Au and Ag nanoinclusions

    摘要: Aluminum nitride (AlN)-based two-phase nanocomposite thin films with plasmonic Au and Ag nanoinclusions have been demonstrated using a one-step thin film growth method. Such AlN-based nanocomposites, while maintaining their wide bandgap semiconductor behavior, present tunable optical properties such as bandgap, plasmonic resonance, and complex dielectric function. Depending on the growth atmosphere, the metallic nanoinclusions self-organized into different geometries, such as nano-dendrites, nano-disks, and nanoparticles, providing enhanced optical anisotropy in-plane and out-of-plane. The infrared transmission measurements demonstrate the signature peaks of AlN as well as a broad transmission window attributed to the plasmonic nanoinclusions. This unique AlN-metal hybrid thin film platform provides a route to modulate the optical response of wide bandgap III-V nitride semiconductors towards infrared sensing or all optical based integrated circuits.

    关键词: plasmonic Au and Ag nanoinclusions,infrared sensing,integrated circuits,AlN-based hybrid thin films,optical properties

    更新于2025-10-22 19:40:53

  • Infrared Light Management Using a Nanocrystalline Silicon Oxide Interlayer in Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells with Efficiency above 25%

    摘要: Perovskite/silicon tandem solar cells are attractive for their potential for boosting cell efficiency beyond the crystalline silicon (Si) single-junction limit. However, the relatively large optical refractive index of Si, in comparison to that of transparent conducting oxides and perovskite absorber layers, results in significant reflection losses at the internal junction between the cells in monolithic (two-terminal) devices. Therefore, light management is crucial to improve photocurrent absorption in the Si bottom cell. Here it is shown that the infrared reflection losses in tandem cells processed on a flat silicon substrate can be significantly reduced by using an optical interlayer consisting of nanocrystalline silicon oxide. It is demonstrated that 110 nm thick interlayers with a refractive index of 2.6 (at 800 nm) result in 1.4 mA cm?2 current gain in the silicon bottom cell. Under AM1.5G irradiation, the champion 1 cm2 perovskite/silicon monolithic tandem cell exhibits a top cell + bottom cell total current density of 38.7 mA cm?2 and a certified stabilized power conversion efficiency of 25.2%.

    关键词: monolithic perovskite/silicon tandem solar cells,infrared photocurrent absorption,nanocrystalline silicon oxide interlayers

    更新于2025-10-22 19:40:53

  • Laser damage characteristics of indium-tin-oxide film and polyimide film

    摘要: This report focuses on the damage characteristics of the indium-tin-oxide (ITO) layer and the polyimide (PI) layer, which are two constituent components of a LCD. This investigation is different from the previous study, in which the alignment layer was deposited directly on a glass substrate. The PI alignment layer is pinned on the ITO film to imitate the structure of the LCD as much as possible in our current study. The damage process of the ITO/Glass sample involves melting, vaporization near the laser-induced damage threshold (LIDT), and removal at a higher fluence. However, the damage process of the PI/ITO/Glass sample involves thermally induced plastic deformation, followed by cooling when the irradiation fluence is near the LIDT, and rupture when the irradiation fluence is higher. The LIDTs of the PI/ITO/Glass samples, as determined by the on-line CCD detection technique, are higher than those of the ITO/Glass samples. The favorable mechanical properties of the PI are primarily responsible for this result.

    关键词: PI film,ITO film,near-infrared laser damage

    更新于2025-10-22 19:40:53

  • The Influence of Ceramic Far-Infrared Ray (cFIR) Irradiation on Water Hydrogen Bonding and its Related Chemo-physical Properties

    摘要: The property of water is highly related to the earth's environment and climate change. The fundamental dynamical process of water is include formation and breaking of hydrogen bonds. This dynamic process, so far, is still poorly understood. We investigated weakening of the hydrogen bonds of water after ceramic Far-Infrared Ray (cFIR) irradiation and the resulting effects on physical and chemical properties of water. In this study, the Fourier transform infrared spectroscopy (FT-IR) was used to explore hydrogen bonding change of cFIR-irradiated water; in addition, capillary viscometers, Gas Chromatographs (GC), Differential Scanning Calorimetry (DSC), contact angles, Franz cells, High-Performance Liquid Chromatography (HPLC), and capillary electrophoresis analysis were used to evaluate its physical characteristics, such as viscosity, volatility, temperatures of water crystallization, surface tension, diffusion, hydrogen peroxide dissociation, solubility of solid particles, and changes in pH of acetic acid. The cFIR treated water decreased in viscosity and surface tension (contact angles), but increased in the solubility of solid particles, hydrogen peroxide dissociation, temperatures of water crystallization, and acidity of acetic acid. The weakening of water hydrogen bonds caused by cFIR irradiation is correspondent with our previous medical-biological studies on cFIR.

    关键词: Hydrogen bonds,Fourier transform infrared spectroscopy (FT-IR),Contact angle,Ceramic far infrared ray (cFIR),Irradiation water,Solubility,Volatility

    更新于2025-09-23 15:23:52

  • Open-path Halon 1301 NDIR sensor with temperature compensation

    摘要: Halon 1301 (bromotrifluoromethane) is a kind of fire extinguishing agent in aviation industry. Volume concentration measurement of Halon 1301 is necessary in the design of aircraft fire protection systems. In this research, an open-path Halon 1301 non-dispersive infrared (NDIR) sensor has been developed for in-situ measurement, a novel cavity-type absorption module was designed to get fast response and more compact structure. Experiment results show that measurement was remarkably affected by temperature. Therefore, temperature compensation algorithm was also studied in this thesis, which was proven to be effective within the range of 25 oC-105 oC.

    关键词: non-dispersive infrared (NDIR),mid-infrared absorption spectrum,Halon 1301,temperature compensation,concentration measurement

    更新于2025-09-23 15:23:52

  • Spatiotemporal Adaptive Nonuniformity Correction Based on BTV Regularization

    摘要: The residual nonuniformity response, ghosting artifacts, and over-smooth effects are the main defects of the existing nonuniformity correction (NUC) methods. In this paper, a spatiotemporal feature-based adaptive NUC algorithm with bilateral total variation (BTV) regularization is presented. The primary contributions of the innovative method are embodied in the following aspects: BTV regularizer is introduced to eliminate the nonuniformity response and suppress the ghosting effects. The spatiotemporal adaptive learning rate is presented to further accelerate convergence, remove ghosting artifacts, and avoid over-smooth. Moreover, the random projection-based bilateral filter is proposed to estimate the desired target image more accurately which yields more details in the actual scene. The experimental results validated that the proposed algorithm achieves outstanding performance upon both simulated data and real-world sequence.

    关键词: infrared image sensors,Infrared imaging,neural networks,image denoising

    更新于2025-09-23 15:23:52

  • Spectral correction for handheld optoacoustic imaging by means of near-infrared optical tomography in reflection mode

    摘要: In vivo imaging of tissue/vasculature oxygen saturation levels is of prime interest in many clinical applications. To this end, the feasibility of combining two distinct and complementary imaging modalities was investigated: optoacoustics (OA) and near-infrared tomography (NIROT), both operating noninvasively in reflection mode. Experiments were conducted on two optically heterogeneous phantoms mimicking tissue before and after the occurrence of a perturbation. OA imaging was used to resolve submillimetric vessel-like optical absorbers at depths up to 25 mm, but with a spectral distortion in the OA signals. NIROT measurements were utilized to image perturbations in the background and to estimate the light fluence inside the phantoms at the wavelength pair (760 nm, 830 nm). This enabled the spectral correction of the vessel-like absorbers' OA signals: the error in the ratio of the absorption coefficient at 830 nm to that at 760 nm was reduced from 60%-150% to 10%-20%. The results suggest that oxygen saturation (SO2) levels in arteries can be determined with <10% error and furthermore, that relative changes in vessels' SO2 can be monitored with even better accuracy. The outcome relies on a proper identification of the OA signals emanating from the studied vessels.

    关键词: fluence compensation,near-infrared optical tomography,blood oxygen saturation,quantitative optoacoustic imaging,optoacoustic signal quantification,multimodal imaging,spectral correction

    更新于2025-09-23 15:23:52

  • Application of Visible-near Infrared Spectral Imaging for Monitoring Biological Materials

    摘要: N ear infrared (NIR) spectroscopy is a powerful tool for the non-destructive evaluation of biological materials due to its generally weak absorption bands. Biological materials such as wood and plant leaves have a complicated structure in which the distribution of chemical composition and surface structure is non-uniform. Therefore, an imaging technique which combines high spatial resolution with the ability to acquire signal from a wider sample area is required. Three-dimensional image data such as hyperspectral imagery or a movie file has plenty of both spectral and spatial information. However, the visible-near infrared (vis-NIR) spectrum and the time profile of a single pixel normally display strong multicollinearity, thus requiring multivariate analysis for effective extraction of valuable information from three-dimensional image data. This article introduces two examples of image analysis for the non-destructive monitoring of biological materials.

    关键词: spectroscopy,multivariate analysis,NIR,imaging,biological materials,hyperspectral,non-destructive evaluation,infrared

    更新于2025-09-23 15:23:52