- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Three-dimensional Nanoscale Mapping of Porosity in Solution-Processed ITO Multilayer Thin Films for Patternable Transparent Electrodes
摘要: Indium tin oxide (ITO) films constitute components of many layered heterostructures used for emergent technologies beyond conventional optoelectronics. Compositional and morphological changes have a direct impact on the device’s performance. Hence control over the morphology with advanced multimodal characterization approaches are required to evaluate the devices. Herein multilayer ITO films deposited by spin coating were quantified in nanoscale detail in three dimensions by combining results from depth-sensitive neutron reflectometry (NR), non-contact topographic AFM images and cross-sectional SEM images. Films with different number of deposited layers were visually transparent even though the topmost layer was as high as 60% porous, with porosity gradually decreasing as the number of the underneath sublayers increased. Surface and interfacial roughness through the total film and individual layer thickness were obtained. NR data also furnished quantitative depth information on the films chemical composition and layer-by-layer bulk density, which has never been obtained before, providing a way to monitor and ultimately control the sheet resistivity via the pore network. When the same formulation is used for inkjet printing patterns, the larger pores disappear and the optical properties are improved to >90% transmittance at all visible wavelengths. All 5L films achieved sheet resistivities as low as 10-2 ?-cm and can therefore be used as patternable transparent electrodes for many devices including liquid crystal displays.
关键词: thin multilayer film,neutron reflectometry,depth density distribution,neutron absorption reflectometry,Indium tin oxide,porosity,structure chemical depth profile,off-specular neutron scattering,layer by layer deposition
更新于2025-11-19 16:56:35
-
Thermally Stable, Efficient, Vapor Deposited Inorganic Perovskite Solar Cells
摘要: We report on thermally stable inorganic mixed halide perovskite solar cells deposited using a vapor deposition technique with no loss in device performance at 200 °C for 72 hours. X-ray diffraction analysis confirms no compositional degradation of the perovskite layer up to 200 °C anneals. We use a layer-by-layer vapor deposition technique with thin layers (several nm) of PbI2 and CsBr precursors to fabricate inorganic mixed halide perovskite solar cells with a photoconversion efficiency of 11.8%. We study the effect of several key parameters of the perovskite fabrication process that control the intermixing of the perovskite layer and their effect on device efficiency and hysteresis. The thermal stability of the perovskite material and its energy band gap of 1.87eV makes it appropriate for use in tandem junction cells for use in real-life environments with high solar illuminance where the ambient temperatures exceed 55 °C in the summer, and silicon cell module temperatures approach 86 °C.
关键词: Thermal Stability,inorganic perovskite solar cells,vacuum deposition,mixed halide perovskites,layer-by-layer deposition,thermal degradation
更新于2025-09-23 15:21:01
-
High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition
摘要: Ternary blending of light harvesting materials has been proven to be a potential strategy to improve the efficiency of solution processed organic solar cells (OSCs). However, the optimization of ternary system is usually more complicated than the binary one as the morphology of conventional ternary blend films is very difficult to control, thus undermining the potential of ternary OSCs. Herein, we report a general strategy for better control of the morphology of ternary blend films composed of a polymer donor and two non-fullerene small molecule acceptors for high-performance OSCs using sequential layer-by-layer (LbL) deposition method. The resulted LbL films form bicontinuous interpenetrating network structure with high crystallinity of both the donor and acceptor materials, showing efficient charge generation, transport and collection properties. In addition, the power conversion efficiencies (PCEs) of the ternary LbL OSCs are less sensitive to the blending ratio of the third component acceptor, providing more room to optimize the device performance. As a result, optimal PCEs of over 11%, 13 % and 16 % were achieved for the LbL OSCs composed of PffBT4T-2OD/IEICO-4F:FBR, PBDB-T-SF/IT-4F:FBR and PM6/Y6:FBR, respectively. Our work provides useful and general guidelines for the development of more efficient ternary OSCs with better controlled morphology.
关键词: sequential layer-by-layer deposition,non-fullerene acceptor,ternary organic solar cell,high performance,morphology control
更新于2025-09-23 15:19:57
-
Preparation of Transparent Conductive Electrode via Layer-By-Layer Deposition of Silver Nanowires and Its Application in Organic Photovoltaic Device
摘要: Solution processed transparent conductive electrodes (TCEs) were fabricated via layer-by-layer (LBL) deposition of silver nanowires (AgNWs). First, the AgNWs were coated on (3-Mercaptopropyl)trimethoxysilane modified glass substrates. Then, multilayer AgNW films were obtained by using 1,3-propanedithiol as a linker via LBL deposition, which made it possible to control the optical transmittance and sheet resistance of multilayer thin films. Next, thermal annealing of AgNW films was performed in order to agent their electrical conductivity. AgNW monolayer films were characterized by UV-Vis spectrometer, field emission scanning electron microscopy, optical microscopy, atomic force microscopy and sheet resistance measurement by four-point probe method. The high performances were achieved with multilayer films, which provided sheet resistances of 9 ?/sq, 11 ?/sq with optical transmittances of 71%, 70% at 550 nm, which are comparable to commercial indium tin oxide (ITO) electrodes. Finally, an organic photovoltaic device was fabricated on the AgNW multilayer electrodes for demonstration purpose, which exhibited power conversion efficiency of 1.1%.
关键词: silver nanowires,layer by layer deposition,organic photovoltaics,transparent conductive electrode
更新于2025-09-16 10:30:52
-
Efficient Exploration of the Composition Space in Ternary Organic Solar Cells by Combining High‐Throughput Material Libraries and Hyperspectral Imaging
摘要: Organic solar cells based on ternary active layers can lead to higher power conversion efficiencies than corresponding binaries, and improved stability. The parameter space for optimization of multicomponent systems is considerably more complex than that of binaries, due to both, a larger number of parameters (e.g., two relative compositions rather than one) and intricate morphology–property correlations. Most experimental reports to date reasonably limit themselves to a relatively narrow subset of compositions (e.g., the 1:1 donor/s:acceptor/s trajectory). This work advances a methodology that allows exploration of a large fraction of the ternary phase space employing only a few (<10) samples. Each sample is produced by a designed sequential deposition of the constituent inks, and results in compositions gradients with ≈5000 points/sample that cover about 15%–25% of the phase space. These effective ternary libraries are then colocally imaged by a combination of photovoltaic techniques (laser and white light photocurrent maps) and spectroscopic techniques (Raman, photoluminescence, absorption). The generality of the methodology is demonstrated by investigating three ternary systems, namely PBDB-T:ITIC:PC70BM, PTB7-Th:ITIC:PC70BM, and P3HT:O-IDFBR:O-IDTBR. Complex performance-structure landscapes through the ternary diagram as well as the emergence of several performance maxima are discovered.
关键词: high-throughput screening,layer-by-layer deposition,organic solar cells,ternaries,Raman imaging
更新于2025-09-12 10:27:22
-
Coupling Layer-by-Layer Assembly and Multilayer Transfer to Fabricate Flexible Transparent Film Heater
摘要: Flexible transparent film heaters (f-TFH) were prepared on a polysulfone (PSU) film with a multilayer transfer of silver nanowires (AgNWs) coated on glass substrates via layer-by-layer (LBL) deposition. First, as-received AgNWs were functionalized with carboxylic acid (AgNW-COOH) and amine (AgNW-NH2) moieties to obtain negatively and positively charged nanowires, respectively. Second, functionalized AgNWs were sequentially coated on a glass substrate via the LBL deposition, which was followed by subjecting the multilayer film to annealing at 125 °C for 30 min to improve the electrical conductivity. Third, the multilayer was transferred from the glass substrate to the polymer film by coating and detaching the PSU. The multilayer film provided optical transmission of 84% and sheet resistance of 12 ?/□ with 5 bilayer sample, which is comparable to indium tin oxide (ITO) film. The f-TFH reached maximum temperature of 128 °C at 7 V with a response time of 45 s. Moreover, it exhibited good defrosting capability by applying 7 V for 20 s. Cyclic bending test results indicated that the sheet resistance of the flexible multilayer film does not demonstrate any change until 300 cycles, while adhesion test 3-M tapes exhibited no sheet resistance change even after 20 peel cycles showing the superior performance of the multilayer film. In addition, the film showed stable heating performance at 128 °C for 5 h.
关键词: Flexible transparent film heater,layer-by-layer deposition,silver nanowires,surface modification,multilayer transfer
更新于2025-09-09 09:28:46