- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Tailored Nanopatterning by Controlled Continuous Nanoinscribing with Tunable Shape, Depth, and Dimension
摘要: We present that the tailored nanopatterning with tunable shape, depth, and dimension for diverse application-specific designs can be realized by utilizing controlled dynamic nanoinscribing (DNI), which can generate bur-free plastic deformation on various flexible substrates via continuous mechanical inscription of a small sliced edge of a nanopatterned mold in a compact and vacuum-free system. Systematic controlling of prime DNI processing parameters including inscribing force, temperature, and substrate feed rate can determine the nanopattern depths and their specific profiles from rounded to angular shapes as a summation of the force-driven plastic deformation and heat-driven thermal deformation. More complex nanopatterns with gradient depths and/or multidimensional profiles can also be readily created by modulating the horizontal mold edge alignment and/or combining sequential DNI strokes, which otherwise demand laborious and costly procedures. Many practical user-specific applications may benefit from this study by tailor-making the desired nanopattern structures within desired areas, including precision machine and optics components, transparent electronics and photonics, flexible sensors, and reattachable and wearable devices. We demonstrate one vivid example in which the light diffusion direction of a light-emitting diode can be tuned by application of specifically designed DNI nanopatterns.
关键词: viscoelasticity,tailored nanopattern,nanoinscribing,extrusion,light diffusion,plastic deformation,tunable profile
更新于2025-09-19 17:13:59
-
An approach for correcting optical paths of different wavelength lasers in diffusive medium based on Monte Carlo simulation
摘要: Near-infrared spectroscopy (NIRS) generally uses multiple wavelengths of light to obtain functional information. When different wavelengths are employed together, their optical paths are different in the medium and it can potentially cause errors. In this study, we introduced an approach of correcting optical paths when laser sources are used. Laser can be approximated by a point source in a diffusive medium and its depth depends on the wavelength. By multiplying the ratio of detected weights emitted from different point sources, they are conceptually moved to the same position. Monte Carlo simulation was implemented to accumulate required data. As an example for verifying this method, optical properties of the white matter of the brain was used. All combinations of four wavelengths (400, 550, 700, and 850 nm) and six source-detector distances (0.5 mm to 3.0 mm at intervals of 0.5 mm) were simulated. Under the same example conditions, the difference between the simulation results and this method was about ‘1.28%’. The results showed that this approach is applicable to short source-detector distance conditions.
关键词: Monte Carlo simulation,Point source approximation,Near infrared spectroscopy,Light diffusion,Optical path,Penetration depth
更新于2025-09-12 10:27:22