- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Raman spectroscopy and laser-induced degradation of groutellite and ramsdellite, two cathode materials of technological interest
摘要: Manganese oxides are important geomaterials, used in a large number of applications. For instance, as pigments in art works or in the treatment and removal of heavy metals from drinking water. Particularly, ramsdellite [Mn4+O2] and groutellite [(Mn0.54+,Mn0.53+)O1.5(OH)0.5], because of their 2 × 1 frameworks that enable proton diffusion, are very important cathode materials. Manganese oxides commonly occur as crypto-crystalline and very fine mixtures of different Mn-phases, iron oxides, silicates and carbonates. Thus, proper characterization can be a difficult task using XRPD. The lack of Raman data on groutellite and the little and conflicting data on ramsdellite do not allow their proper identification by Raman spectroscopy. In this work we characterize natural mixtures of ramsdellite and groutellite by combining SEM-EDS, XRPD, FT-IR and Raman spectroscopy, to provide reference Raman spectra. Our data show that they have a typical and unmistakable spectra, allowing clear recognition. Moreover, we have investigated their laser-induced degradation. Our data show that groutellite transforms into ramsdellite, by the loss of H+ and the oxidation of Mn3+ to Mn4+, already at a very low laser power. Further increasing the laser power the formation of hausmannite [Mn2+Mn23+O4] occurs via the reduction of Mn cations. Our data can be used to study the discharge mechanism in cathodic battery materials, by monitoring the Mn reduction from ramsdellite to groutellite, and finally to groutite [α-Mn3+OOH]. Moreover, Raman mapping allows the study of their distribution in all the investigated samples and, indirectly, those of H+ and Mn3+, which plays a key-role in electrochemical activity of these compounds.
关键词: Raman spectroscopy,Manganese oxides,cathode materials,ramsdellite,laser-induced degradation,groutellite
更新于2025-09-19 17:13:59
-
Cobalt/Manganese Oxides as Theragnosis Nanoplatforms With Magnetic Resonance/Near-Infrared Imaging for Efficient Photothermal Therapy of Tumors
摘要: The combination of near-infrared (NIR) response and imaging response is a hot research area in which the functions of nanomaterials are maximized. However, the types of such materials reported so far present problems such as requiring complex synthesis. In this study, hydrophilic, porous, and hollow cobalt/manganese oxide (CMO) nanocrystals (NCs) were successfully prepared via a facile and green hydrothermal route. The CMO NCs show strong near-infrared (NIR) absorption, which results from their defect structure due to the coexistence of Co2+ and Co3+ in the as-prepared CMO NCs. Thus, the CMO NCs exhibit excellent photothermal performance, showing photothermal efficiency of up to 43.2%. In addition, the CMO NCs possess good magnetic resonance (MR) imaging performance, with longitudinal relaxivity (r1) of up to 3.48 mM?1 s?1. Finally, for the first time, we prove that the CMO nanocrystals are a promising photothermal agent. Our work provides insights into the application of Mn-based control agents and photothermal agents for photothermal theragnosis therapy.
关键词: cobalt/manganese oxides,photothermal agents,magnetic resonance imaging,photothermal theragnosis therapy,near-infrared absorption
更新于2025-09-16 10:30:52
-
Manganese oxide nanofoam prepared by pulsed laser deposition for high performance supercapacitor electrodes
摘要: Manganese oxide nanofoam has been prepared by pulsed laser deposition, from a metallic Mn target in a 5 Torr pressure O2 buffer atmosphere. The as-prepared samples were heat-treated at different temperatures (300?C-500?C) in air. Both as-deposited and heat-treated samples have a high porosity foam-like morphology, as shown by Field Emission Scanning Electron Microscopy. High Resolution Transmission Electron Microscopy revealed that the nanofoam is composed by linked nanoparticles with slight crystallization and growth of the nanoparticles due to heat-treatment, which was confirmed by X-ray diffraction, Raman Spectroscopy and X-ray Photoelectron Spectroscopy. These techniques also showed a variable oxide composition upon heat treatment. The supercapacitive properties of manganese oxide nanofoam treated at 300?C exhibited a specific capacitance higher than 1000 F/g, in the 0 to +1.0 V potential range. After heat treatment at 400?C and 500?C, the specific capacitance decreased compared to that of the 300?C treated sample. An increase of about 130% in the initial capacitance was obtained after 500 cycles for this sample. However, it decreases to one third of the maximum value after 5000 cycles. The results shows that the obtained manganese oxide nanofoam has very high specific capacitance but need to improve the cycle stability.
关键词: microstructures,pulsed laser deposition,porous materials,supercapacitors,nanofoam,manganese oxides
更新于2025-09-11 14:15:04