修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Codelivery of a cytotoxin and photosensitiser <i>via</i> a liposomal nanocarrier: a novel strategy for light-triggered cytosolic release

    摘要: Endosomal entrapment is a key issue for the intracellular delivery of many nano-sized biotherapeutics to their cytosolic or nuclear targets. Photochemical internalisation (PCI) is a novel light-based solution that can be used to trigger the endosomal escape of a range of bioactive agents into the cytosol leading to improved efficacy in pre-clinical and clinical studies. PCI typically depends upon the endolysosomal colocalisation of the bioactive agent with a suitable photosensitiser that is administered separately. In this study we demonstrate that both these components may be combined for codelivery via a novel multifunctional liposomal nanocarrier, with a corresponding increase in the biological efficacy of the encapsulated agent. As proof of concept, we show here that the cytotoxicity of the 30 kDa protein toxin, saporin, in MC28 fibrosarcoma cells is significantly enhanced when delivered via a cell penetrating peptide (CPP)-modified liposome, with the CPP additionally functionalised with a photosensitiser that is targeted to endolysosomal membranes. This innovation opens the way for the efficient delivery of a range of biotherapeutics by the PCI approach, incorporating a clinically proven liposome delivery platform and using bioorthogonal ligation chemistries to append photosensitisers and peptides of choice.

    关键词: photosensitiser,codelivery,cell penetrating peptide,photochemical internalisation,saporin,liposomal nanocarrier,endosomal escape

    更新于2025-11-14 15:32:45

  • Development of Photo-Activated ROS-Responsive Nanoplatform as a Dual-Functional Drug Carrier in Combinational Chemo-Photodynamic Therapy

    摘要: Dual functional drug carrier has been a modern strategy in cancer therapy because it is a platform to elicit additive and synergistic effects through combination therapy. Photo-activated external stimuli such as reactive oxygen species (ROS) also ensure adequate drug delivery in a precise temporal and spatial manner. However, current ROS-responsive drug delivery systems usually require tedious synthetic procedures. A facile one-pot approach has been reported herein, to obtain self-assembled polymeric nanocarriers (NCs) for simultaneous paclitaxel (PTX)- and Rose Bengal (RB)-loading to achieve combined chemo-photodynamic therapy and controlled drug release in responsive to a light-induced ROS stimulus. To encapsulate these hydrophobic and hydrophilic drugs, chitosan (CTS), branched polyethylenimine (bPEI) and polyvinyl alcohol (PVA) were selected and fabricated into nanoblended matrices through an oil-in-water emulsion method. The amphiphilic properties of CTS permit simultaneous entrapment of PTX and RB, while the encapsulation efficiency of RB was further improved by increasing the amount of short-chain bPEI. During the one-step assembly process, bovine serum albumin (BSA) was also added to condense the cationic tripolymer mixtures into more stable nanocarriers (BNCs). Hyaluronic acid (HA) was subsequently grafted onto the surface of BNCs through electrostatic interaction, leading to the formation of HA-BSA/CTS/PVA/bPEI-blended nanocarriers (HBNCs) to achieve an efficient prostate-cancer-cell uptake. Importantly, in response to external light irradiation, HBNCs become destabilized owing to the RB-mediated photodynamic action. It allows an on-demand dual-payload release to evoke a simultaneous photodynamic and chemo treatment for cancer cell eradication. Thus, HBNCs present a new promising approach that exhibits a specific vulnerability to RB-induced photosensitization. The consequent dual-cargo release is also expected to successfully combat cancer through a synergistic anti-tumor effect.

    关键词: ROS-responsive,photodynamic therapy,nanocarrier,chemotherapy,combined therapy

    更新于2025-09-23 15:23:52

  • Cancer Selective Turn-on Fluorescence Imaging Using a Biopolymeric Nanocarrier

    摘要: Most nanoparticle-based bioresearch for clinical applications is unable to overcome the clinical barriers of efficacy (e.g., sensitivity and selectivity), safety for human use, and mass-production processes. Here, we proposed a promising concept of using a biocompatible nanocarrier that delivers natural fluorescent precursors into cancerous cells. The nanocarrier is a biopolymeric nanoparticle that can be easily loaded with fluorescent precursors to form a fluorescent moiety via a biosynthesis pathway. Once delivered into cancerous cells, the nanocarriers are selectively turned on and distinctively fluoresce upon excitation. We, therefore, demonstrated the efficacy of the selective turn-on fluorescence of the nanocarriers in in vitro co-culture models and in vivo tumor-bearing models.

    关键词: Hyaluronic Acid,Cancer Diagnosis,Biocompatible Nanocarrier,Turn-on Fluorescence,5-Aminolevulinic Acid

    更新于2025-09-23 15:22:29

  • Fabrication, Investigation, and Application of Light-Responsive Self-Assembled Nanoparticles

    摘要: Light-responsive materials have attracted increasing interest in recent years on account of their adjustable on-off properties upon specific light. In consideration of reversible isomerization transition for azobenzene (AZO), it was designed as a light-responsive domain for nanoparticles in this research. At the same time, the interaction between AZO domain and β-cyclodextrin (β-CD) domain was designed as a driving force to assemble nanoparticles, which was fabricated by two polymers containing AZO domain and β-CD domain, respectively. The formed nanoparticles were confirmed by Dynamic Light Scattering (DLS) results and Transmission Electron Microscope (TEM) images. An obvious two-phase structure was formed in which the outer layer of nanoparticles was composed of PCD polymer, as verified by 1HNMR spectroscopy. The efficient and effective light response of the nanoparticles, including quick responsive time, controllable and gradual recovered process and good fatigue resistance, was confirmed by UV-Vis spectroscopy. The size of the nanoparticle could be adjusted by polymer ratio and light irradiation, which was ascribed to its light-response property. Nanoparticles had irreversibly pH dependent characteristics. In order to explore its application as a nanocarrier, drug loading and in vitro release profile in different environment were investigated through control of stimuli including light or pH value. Folic acid (FA), as a kind of target fluorescent molecule with specific protein-binding property, was functionalized onto nanoparticles for precise delivery for anticancer drugs. Preliminary in vitro cell culture results confirmed efficient and effective curative effect for the nanocarrier on MCF-7 cells.

    关键词: nanocarrier,nanoparticle,drug delivery,light-responsive property,self-assemble

    更新于2025-09-16 10:30:52

  • Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application in anticancer therapy

    摘要: We report a novel nanophotosensitizer via one-step covalent assembly of dopamine and genipin. This is the first report unveiling the photodynamic effect of dopamine-based materials. These nanophotosensitizers can also act as pH-responsive drug nanocarriers via a catechol–boronate linkage, thus achieving combined PDT and chemotherapy for highly efficient cancer treatment.

    关键词: nanophotosensitizer,genipin,nanocarrier,dopamine,pH-responsive,chemotherapy,photodynamic therapy

    更新于2025-09-12 10:27:22

  • Polyphenol-Assisted Exfoliation of Transition Metal Dichalcogenides into Nanosheets as Photothermal Nanocarriers for Enhanced Antibiofilm Activity

    摘要: Transition metal dichalcogenides (TMDs) nanosheets have evoked enormous research enthusiasm and have shown increased potentials in biomedical field. However, a great challenge lies in high-throughput, large-scale and eco-friendly preparation of TMDs nanosheets dispersions with high quality. Herein, we report a universal polyphenol-assisted strategy to facilely exfoliate various TMDs into monolayer or few-layer nanosheets. By optimizing the exfoliation condition of molybdenum disulfide (MoS2), the yield and concentration of as-exfoliated nanosheets is up to 60.5% and 1.21 mg/mL, respectively. This is the most efficient aqueous exfoliation method at present and is versatile for the choices of polyphenols and TMDs nanomaterials. The as-exfoliated MoS2 nanosheets possess superior biomedical stability as nanocarriers to load antibiotic drug. They show high photothermal conversion effect and thus induce a synergetic effect of chemotherapy and photothermal therapy to harvest enhanced antibiofilm activity under near-infrared (NIR) light. All these results offer an appealing strategy toward the synthesis and application of ultrathin TMDs nanosheets, with great implications for their development.

    关键词: monolayer nanosheets,aqueous exfoliation,photothermal nanocarrier,transition metal dichalcogenides (TMDs),antibiofilm activity

    更新于2025-09-10 09:29:36