修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

260 条数据
?? 中文(中国)
  • Synthesis of Inorganic-Organic 2D CdSe Slab-Diamine Quantum Nets

    摘要: Porous semiconductors attract great interest due to their unique structural characteristics of high surface area as well as their intrinsic optical and electronic properties. In this study, synthesis of inorganic–organic 2D CdSe slabs-diaminooctane (DAO) porous quantum net structures is demonstrated. It is found that the hybrid 2D CdSe-DAO lamellar structures are disintegrated into porous net structures, maintaining an ultrathin thickness of ≈1 nm in CdSe slabs. Furthermore, the CdSe slabs in quantum nets show the highly shifted excitonic transition in the absorption spectrum, demonstrating their strongly confined electronic structures. The possible formation mechanism of this porous structure is investigated with the control experiments of the synthesis using n-alkyldiamines with various hydrocarbon chain lengths and ligand exchange of DAO with oleylamine. It is suggested that a strong van der Waals interaction among long chain DAO may exert strong tensile stress on the CdSe slabs, eventually disintegrating slabs. The thermal decomposition of CdSe-DAO quantum nets is further studied to form well-defined CdSe nanorods. It is believed that the current CdSe-DAO quantum nets will offer a new type of porous semiconductors nanostructures under a strong quantum-confinement regime, which can be applied to various technological areas of catalysts, electronics, and optoelectronics.

    关键词: quantum nets,porous materials,semiconductor nanocrystals,CdSe,2D materials

    更新于2025-09-23 15:23:52

  • Ethanol-Precipitable Silica-Passivated Perovskite Nanocrystals Incorporated into Polystyrene Microspheres for Long-Term Storage and Re-Usage

    摘要: Perovskite nanocrystals (PNCs) are emerging luminescent materials due to their fascinating physic-optical properties. However, their sensitive surface chemistry with organic polar solvents, oxygen and moisture greatly hinders their developments towards practical applications. Herein we promote silica-passivated PNCs (SP-PNCs) by in situ hydrolyzing the surface ligands of (3-aminopropyl) triethoxysilane. The resultant SP-PNCs possesses a high quantum yield (QY) of 80% and are precipitable by polar solvents, such as ethanol and acetone, without destroying their surface chemistry or losing QY, which offers an eco-friendly and efficient method for separation, purification and phase transfer of PNCs compared with the traditional solvent evaporation technique. Moreover, we further promoted a swelling-deswelling encapsulation process to incorporate the as-made SP-PNCs into polystyrene microspheres (PMs), which can largely increase the stability of the SP-PNCs against moisture for long-term storage. Besides, the embedded SP-PNCs can also be reused and mono-dispersed by totally dissolving the PMs in suitable solvents for making all-solution-processed devices. We thereby believe this work should open new avenues for greener synthesis, scalable production, and long-term storage of PNCs towards the emerging practical applications.

    关键词: stability,perovskite nanocrystals,surface engineering,encapsulation,polar environment

    更新于2025-09-23 15:23:52

  • Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles

    摘要: The synthesis of up-conversion luminescent composite films based on a nanocellulose matrix containing Sr1-xHoxF2+x particles was proposed. The combination of sulfuric acid hydrolysis and ultrasonication allowed us to synthesize a series of stable nanocellulose dispersions from various raw materials (powdered sulphate bleached wood pulp, Blue Ribbon filter paper, and microcrystalline cellulose Avicel). The size distribution of cellulose nanoparticles in the aqueous dispersions was determined. Cellulose nanocrystals (CNC) and/or cellulose nanofibrils (CNF) dispersions were used to fabricate thin films by solution casting followed by solvent evaporation under ambient conditions. The size and shape of cellulose nanoparticles, surface morphology, crystallinity index of nanocellulose, polymerization degree, and optical properties were studied. By mixing aqueous dispersions of CNC with up-conversion Sr1-xHoxF2+x particles, homogeneous suspensions were obtained. Finally, a solution casting technique was used to prepare CNC/Sr1-xHoxF2+x and CNC/CNF/Sr1-xHoxF2+x nanocomposite films. CNC/CNF dispersions were utilized for the production of flexible, durable, transparent composite films. The synthesized nanocomposites demonstrated intense red luminescence upon Ho3+ excitation by 1912 nm laser radiation. The obtained up-conversion luminescent composite films can be considered as a promising material for photonics, in particular for near-IR laser labeling and radiation visualization, luminescent sensorics.

    关键词: Nanocomposites,Up-conversion luminescent films,Cellulose nanofibrils,Cellulose nanocrystals,SrF2:Ho3+

    更新于2025-09-23 15:23:52

  • Blue Electrogenerated Chemiluminescence from Halide Perovskite Nanocrystals

    摘要: Electrogenerated chemiluminescence (ECL) has been extensively used in ultrasensitive electroanalysis because it can be generated electrochemically without using expensive optics and light sources. Visible ECL emission can be obtained with a reasonable quantum yield and stability. Blue ECL is rare and often suffers from stability and poor quantum efficiency. Blue ECL emission at 473 nm from organometallic halide perovskite nanocrystals (PNCs), CH3NH3PbCl1.08Br1.92, is reported here for the first time using tripropylamine (TPrA) as co-reactant. The blue ECL emission peak resembles its photoluminescence peak position. In addition to this blue emission peak, the ECL spectra of CH3NH3PbCl1.08Br1.92 PNCs also showed a broad ECL peak at 745 nm. Generation of the second ECL peak at 745 nm from CH3NH3PbCl1.08Br1.92 PNCs was can be explained by the existence of surface trap states on as-synthesized PNC due to incomplete surface passivation. Halide anion tunability of ECL emission from CH3NH3PbX3 (X: Cl, Br, I) PNCs is also demonstrated. The fluorescence microscopy image of single PNC and stability of selected single PNCs are presented in this with simultaneous acquisition of fluorescence spectra using 405-nm laser excitation. The photoluminescence (PL) decay was described by PL lifetime (τ) of 1.2 ns. The effect of the addition of surfactants (oleic acid and n-octylamine) on the fluorescence intensity and stability of CH3NH3PbCl1.08Br1.92 PNCs is also discussed.

    关键词: Surfactants,Blue light emission,ECL (electrogenerated chemiluminescence),Photoluminescence (PL),Perovskite nanocrystals (PNCs),Photoluminescence quantum yield (PLQY)

    更新于2025-09-23 15:23:52

  • Synthesis of color-tunable CdTe/CdS:Mn core-shell nanocrystal emitters

    摘要: This study presents CdTe/CdS:Mn core–shell nanocrystals (NCs) prepared in aqueous media, using thioglycolic acid as capping agent. Firstly, CdTe NCs were synthesized, and then, Mn-doped CdS shell were deposited on the top of the CdTe core under Ar atmosphere. The NCs were structurally and optically characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), X-ray photoelectron (XPS), photoluminescence (PL), and Fourier transform infrared (FTIR) spectroscopy. The results obtained from XRD, XPS, PL, and EDX showed that the Mn ions were successfully introduced into the nanocrystalline shells. Moreover, the effect of Mn concentrations on the optical properties of the synthesized core-shell NCs was investigated. The effective band gap of the sample is in an indirect relationship with the Mn : Cd molar ratio, confirmed by PL analysis, and PL emissions can be measured at various wavelengths. The PL spectra showed 990 and 170 percent enhancement in the emission intensity of CdTe/CdS:Mn core/shell NCs (Mn: Cd 2.5%) compared to CdTe NCs and CdTe/CdS core/shell NCs, respectively. Consequently, the introduction of Mn dopants into the core-shell structures not only diminishes the density of quenching centers, but also reduces the effective band gap energies.

    关键词: Core/Shell,Doping,Nanocrystals,CdTe/CdS:Mn,Luminescence

    更新于2025-09-23 15:23:52

  • A personalized and long-acting local therapeutic platform combining photothermal therapy and chemotherapy for the treatment of multidrug-resistant colon tumor

    摘要: Background: Local photothermal therapy (PTT) provides an easily applicable, noninvasive adjunctive therapy for colorectal cancer (CRC), especially when multidrug resistance (MDR) occurs. However, using PTT alone does not result in complete tumor ablation in many cases, thus resulting in tumor recurrence and metastasis. Materials and methods: In this study, we aim to develop a personalized local therapeutic platform combining PTT with long-acting chemotherapy for the treatment of MDR CRC. The platform consists of polyethylene glycol (PEG)-coated gold nanorods (PEG-GNRs) and d-alpha-tocopheryl PEG 1000 succinate (TPGS)-coated paclitaxel (PTX) nanocrystals (TPGS-PTX NC), followed by the incorporation into an in situ hydrogel (gel) system (GNRs-TPGS-PTX NC-gel) before injection. After administration, PEG-GNRs can exert quick and efficient local photothermal response under near-infrared laser irradiation to shrink tumor; TPGS-PTX NC then provides a long-acting chemotherapy due to the sustained release of PTX along with the P-glycoprotein inhibitor TPGS to reverse the drug resistance. Results: The cytotoxicity studies showed that the IC50 of GNRs-TPGS-PTX NC-gel with laser irradiation decreased to ~178-folds compared with PTX alone in drug-resistant SW620 AD300 cells. In the in vivo efficacy test, after laser irradiation, the GNRs-TPGS-PTX NC-gel showed similar tumor volume inhibition compared with GNRs-gel at the beginning. However, after 14 days, the tumor volume of the mice treated with GNRs-gel quickly increased, while that of the mice treated with GNRs-TPGS-PTX NC-gel remained controllable due to the long-term chemotherapeutic effect of TPGS-PTX NC. The mice treated with GNRs-TPGS-PTX NC-gel also showed no weight loss and obvious organ damages and lesions during the treatment, indicating a low systemic side effect profile and a good biocompatibility. Conclusion: Overall, the nano-complex may serve as a promising local therapeutic patch against MDR CRC with one-time dosing to achieve a long-term tumor control. The doses of PEG-GNRs and TPGS-PTX NC can be easily adjusted before use according to patient-specific characteristics potentially making it a personalized therapeutic platform.

    关键词: in situ hydrogel,tumor recurrence,gold nanorods,paclitaxel nanocrystals,TPGS

    更新于2025-09-23 15:23:52

  • Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy

    摘要: The interaction between excitons and phonons in semiconductor nanocrystals plays a crucial role in the exciton energy spectrum and dynamics, and thus in their optical properties. We investigate the exciton-phonon coupling in giant-shell CdSe/CdS core-shell nanocrystals via resonant Raman spectroscopy. The Huang-Rhys parameter is evaluated by the intensity ratio of the longitudinal-optical (LO) phonon of CdS with its first multiscattering (2LO) replica. We used four different excitation wavelengths in the range from the onset of the CdS shell absorption to well above the CdS shell band edge to get insight into resonance effects of the CdS LO phonon with high energy excitonic transitions. The isotropic spherical giant-shell nanocrystals show consistently stronger exciton-phonon coupling as compared to the anisotropic rod-shaped dot-in-rod (DiR) architecture, and the 2LO/LO intensity ratio decreases for excitation wavelengths approaching the CdS band edge. The strong exciton-phonon coupling in the spherical giant-shell nanocrystals can be related to the delocalization of the electronic wave functions. Furthermore, we observe the radial breathing modes of the GS nanocrystals and their overtones by ultra-low frequency Raman spectroscopy with nonresonant excitation, using laser energies well below the band gap of the heteronanocrystals, and highlight the differences between higher order optical and acoustic phonon modes.

    关键词: Giant-shell nanocrystals,acoustic phonons,Dot-in-rods,Raman spectroscopy,Core-shell heterostructures,exciton-phonon coupling

    更新于2025-09-23 15:23:52

  • Light-induced effects on crystal size and photo-stability of colloidal CsPbBr<sub>3</sub> perovskite nanocrystals

    摘要: CsPbBr3 perovskite nanocrystals (PNCs) have been synthesized using the hot injection method. The CsPbBr3 PNCs exhibit a high photoluminescence quantum yield (PLQY) of 73%. A comprehensive study of UV light interaction with the CsPbBr3 PNCs was performed. SEM images, photoluminescence spectra, X-Ray Diffraction and PLQY measurements were obtained for different time of UV exposure. The exposure to UV light modifies the crystal size (from 10X10 nm to 12X95 nm) and morphology (change from nanocubic to nanorods form). The XRD spectra show a change from tetragonal to cubic crystalline structure. In addition, the interaction of UV light modifies the optical properties of the PNCs by varying the photoluminescence. The material remains stable for a period of 1 hour, however, with exposure to UV light, the PNCs show a decrement in QY from 73.3% to 46.6% after 30 days. These results indicate that light-induce variation in morphological and photo-stability of CsPbBr3 PNCs.

    关键词: luminescence,photostability,CsPbBr3 nanocrystals,morphological study

    更新于2025-09-23 15:23:52

  • Synthesis of Carbon Nanodots from Cellulose Nanocrystals Oil Palm Empty Fruit by Pyrolysis Method

    摘要: Biomass such as cellulose is one of the most common abundant organic materials on the Earth. Biomass has carbon chain that could be an excellent choice for the fabrication of carbon materials. Cellulose nanocrystal is nano-sized cellulose and could become the potential source in fabricating carbon nanodots that are affected by pyrolysis temperature. In fact, the size and temperature are essentially important to synthesize the carbon nanodots. This research is contributed to synthesize this material, and to investigate the effect of temperature. The percentage of cellulose nanocrystals and carbon nanodots obtained are less than 50%. Carbon nanodots are synthesized by pyrolysis method and cellulose nanocrystals are fabricated by membrane method. TEM analysis shows that cellulose nanocrystals are nano-sized. Under UV light source, the samples show fluoroscencing colours i.e. blue to green. From this research it can be concluded that the temperature affects the characteristics of carbon nanodots produced by pyrolysis method.

    关键词: Pyrolysis,Cellulose Nanocrystals,Fluorescent,Carbon Nanodots

    更新于2025-09-23 15:23:52

  • [IEEE 2018 International Semiconductor Conference (CAS) - Sinaia, Romania (2018.10.10-2018.10.12)] 2018 International Semiconductor Conference (CAS) - Enhanced Photoconductivity of SIGE-Trilayer Stack by Retrenching Annealing Conditions

    摘要: We studied the effect of short term furnace annealing over the photoconductive properties of tristacked layer i.e. TiO2/(SiGe/TiO2)3. The structure was prepared by depositing alternate layers of TiO2 and SiGe films, using sputtering technique. A direct-current magnetron transmission electron microscopy and grazing incidence spectroscopy was used to analyze the morphology of the structure. Photoconductive properties were studied by measuring photocurrent spectra at different applied voltages and temperatures. Tristack layers were obtained with 5-10 nm SiGe nanocrystals (NCs) by annealing at 600 °C for 5 min. No sign of SiO2 formation was found inside stacked layers. A maximum in the photocurrent spectra was observed at 994 nm at 300 K but it red-shifted gradually to 1045 nm with decrease in temperature to 100 K. This transition in peak maxima is attributed to SiGe NCs, due to lattice vibration and to contribution of non-radiative recombination at low temperatures.

    关键词: TiO2,magnetron sputtering,nanocrystals,photoconductivity,SiGe,annealing

    更新于2025-09-23 15:22:29