- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Purification and comprehensive utilization of sapphire kerf waste
摘要: Sapphire kerf waste (a fine powder) is a great potential source of high-purity α-Al2O3 and is currently discarded without reutilization, which is a waste of this resource and causes environmental problems, such as occupying space and generating dust. Herein, we report a feasible combined method to recycle valuable high-purity α-Al2O3 from sapphire kerf waste through the ultrasound-assisted leaching of nickel, diamond removal by bulk heating and a grinding process. The impurities in the waste were collected, and their existence states were characterized as independent metal nickel and diamond. The nickel impurity was removed from the waste by ultrasound-assisted leaching using a mixture of sulfuric acid and nitric acid, and the optimal leaching efficiency reached 99.67% under the conditions of sulfuric acid: nitric acid = 2:1 (v/v), 4 mol/L H+ concentration, 4 mL/g liquid-solid ratio, 45 °C, 30 min, 200 rpm, 240 W ultrasonic power and 45 kHz ultrasonic frequency. Subsequently, nickel ions in the lixivium were recycled in the form of nickel sulfate through extraction and stripping treatments. The diamond impurity was removed by bulk heating in flowing oxygen, and the optimal removal ratio was 99.65% under the conditions of 800 °C, 30 min and oxygen flow of 400 mL/min. High-purity α-Al2O3 was successfully recovered from the sapphire kerf waste after the grinding process, which had a purity higher than 99.99 wt% and an average diameter of 0.6 mm. In addition, the kinetics of leaching nickel and diamond removal were systematically analysed based on the shrinking model, and the chemical reaction was found to be the control step. The reaction mechanisms of the two processes were also studied. The economic evaluation revealed that the profit from dealing with 1 kg sapphire kerf waste with this method was $13.68. Therefore, the proposed method is promising for providing technical and economical guidance for industrial production.
关键词: Purification,Sapphire kerf waste,Carbon removal,Nickel leaching,Recycle
更新于2025-09-23 15:23:52
-
Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants
摘要: In the present work, nickel-base composite powder (Ni60), nickel-base composite powder with the addition of h-BN solid lubricants (h-BN/Ni60) and nickel-base composite powder with the addition of nano-Cu encapsulated h-BN solid lubricants (nano-Cu/h-BN/Ni60) were used as raw materials to synthesize three different coatings on Q235 steels by laser cladding. Microstructures of these coatings were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. Tribological properties of these coatings were investigated at the temperatures from 25 °C to 600 °C. High temperature micro-hardness measurement was performed by Vickers micro-hardness tester. The results showed that the h-BN particles survived after laser cladding and displayed a homogeneous distribution in the nickel-base composite matrix. The encapsulation of h-BN by nano-Cu resulted in an increase of h-BN content in the coating. Although the addition of nano-Cu and h-BN led to a decrease on hardness, the nano-Cu/h-BN/Ni60 coating had the lowest friction coefficient and wear rate among the three coatings in a wide range of temperature from 25 °C to 500 °C. The mechanism of wear reduction by addition of nano-Cu encapsulated h-BN solid-lubricants was also discussed in this research.
关键词: Laser cladding,Self-lubricant coating,Steel substrate,Wear,Wide temperature range,Nickel-base composite
更新于2025-09-23 15:23:52
-
Dual-Route Hydrogenation of the Graphene/Ni Interface
摘要: Nanostructured architectures based on graphene/metal interfaces might be efficiently exploited in hydrogen storage due to the attractive capability to provide adsorption sites both at the top side of graphene and at the metal substrate after intercalation. We combined in situ high resolution x-ray photoelectron spectroscopy and scanning tunneling microscopy with theoretical calculations to determine the arrangement of hydrogen atoms at the graphene/Ni(111) interface at room temperature. Our results show that at low coverage H atoms predominantly adsorb as monomers and that chemisorption saturates when ~25% of the surface is hydrogenated. In parallel, with a much lower rate, H atoms intercalate below graphene and bind to Ni surface sites. Intercalation progressively destabilizes the C-H bonds and triggers the release of the hydrogen chemisorbed on graphene. Valence band and near edge absorption spectroscopy demonstrate that the graphene layer is fully lifted when the Ni surface is saturated with H. Thermal programmed desorption was used to determine the stability of the hydrogenated interface. Whereas the H atoms chemisorbed on graphene remain unperturbed over a wide temperature range, the intercalated phase abruptly desorbs 50-100 K above room temperature.
关键词: storage,graphene,intercalation,desorption,nickel,hydrogenation
更新于2025-09-23 15:23:52
-
Visible Light Driven Hydrogen Evolution by Molecular Nickel Catalysts with Time-Resolved Spectroscopic and DFT Insights
摘要: Hydrogen (H2) is a clean fuel that can potentially be a future solution for the storage of intermittent renewable energy. However, current H2 production is mainly dominated by the energy intensive steam reforming reaction, which consumes a fossil fuel, methane, and emits copious amounts of carbon dioxide as one of the byproducts. To address this challenge, we report a molecular catalyst that produces H2 from aqueous solutions, is composed of affordable, earth-abundant elements such as nickel, and has been incorporated into a system driven by visible light. Under optimized conditions, we observe a turnover number of 3880, among the best for photocatalytic H2 evolution with nickel complexes from water?methanol solutions. Through nanosecond transient absorption, electron paramagnetic resonance, and UV?vis spectroscopic measurements, and supported by density functional theory calculations, we report a detailed study of this photocatalytic H2 evolution cycle. We demonstrate that a one-electron reduced, predominantly ligand-centered, reactive Ni intermediate can be accessed under visible light irradiation using triethylamine as the sacrificial electron donor and reductive quencher of the initial photosensitizer excited state. In addition, the computational calculations suggest that the second coordination sphere ether arms can enhance the catalytic activity by promoting proton relay, similar to the mechanism among [FeFe] hydrogenases in nature. Our study can form the basis for future development of H2 evolution molecular catalysts that incorporate both ligand redox noninnocence and alternative second coordination sphere effects in artificial photosynthetic systems driven by visible light.
关键词: Proton relay,Second coordination sphere,DFT calculations,Time-resolved spectroscopy,Visible light photocatalysis,Hydrogen evolution,Molecular nickel catalysts
更新于2025-09-23 15:23:52
-
Properties of Porous Silicon Precipitated with Nickel for Gas Sensors
摘要: The preparation and properties of modified porous silicon is discussed and a proposal of a sensitive layer for a gas detector is presented. The modification is done by precipitation and electrochemical deposition of nickel. The morphology of sample surfaces is examined by atomic force microscopy and scanning electron microscopy (SEM). SEM-coupled energy dispersive spectroscopy is used to analyse the chemical composition of the samples. Magnetic response is measured with a SQUID magnetometer. Electrochemical impedance spectroscopy is used to study the sensitivity of the samples to isopropanol vapour in the presence of alternating electric current. A series of samples prepared with a higher anodic current density show higher sensitivity to isopropanol vapours in comparison to a lower anodic current.
关键词: Electrochemical Impedance Spectroscopy,Porous Silicon,Gas Sensors,SQUID,Electroless Nickel Deposition,Atomic Force Microscopy
更新于2025-09-23 15:22:29
-
Improved Photocatalytic Properties of NiS Nanocomposites Prepared by Displacement Method for Removal of Rose Bengal Dye
摘要: Objective: The present work describes NiS nanoparticles were prepared by chemical displacement method using CTAB as a stabilizer. Method: For the source of Sulfide ion, we used thioacetamide as fuel and nickel nitrate as metal salt. NiS nanoparticles are p-type semiconductor. Band gap of NiS is 0.5- 0.6 eV and also reported to be a good photo catalyst in the degradation of pollutants. The structural, morphological, metal percentage and optical properties of as synthesized nanoparticles are investigated by using X-ray diffraction (XRD), UV-Visible spectra; Field emission gun scanning electron microscopy (FEG-SEM) with EDS, Fourier transforms infrared spectroscopy (FTIR), High-resolution transmission electron microscopy (HR-TEM) and Photoluminescence spectroscopy (PL). Results: The x-ray diffraction patterns revealed that the particles exhibited a crystal structure at the suitable temperature. The average particle size of the nanoparticles from the X-ray diffraction is about 22.8 nm and also Field emission gun scanning electron microscopy shows good morphology and exhibited clearly hexagonal shape. Conclusion: The Transmission electron microscopy (HR-TEM) shows the crystalline size of structures is 22 nm. Further, the Photocatalytic activity of Synthesized NiS nanoparticles was investigated by photo catalytic removal of Rose Bengal as a model of organic pollutant. It shows good photocatalytic activity against Rose Bengal dye (98.1%).
关键词: Nanoparticles,UV-Vis,FEG-SEM,EDAX,XRD,FTIR,HR-TEM,nickel sulfide
更新于2025-09-23 15:22:29
-
Surface structural alteration of multi-walled carbon nanotubes decorated by nickel nanoparticles based on laser ablation/chemical reduction methods to enhance hydrogen storage properties
摘要: The catalytic effect of nickel is addressed to decorate the multi-walled carbon nanotubes for the purpose of hydrogen storage. The hydrogen sorption/desorption are investigated using the volumetric technique. Nickel nanoparticles are distributed on the surface of nanotubes using the laser ablation/chemical reduction treatments. The hydrogen uptake is elevated at higher nickel population up to a certain value and then experiences a significant drop for larger nickel content. The laser treatment is accompanied by the induced pores around nanotubes. This gives rise to the creation of the larger pores at higher laser doses leading to decrease the hydrogen trapping. Despite the pore size distribution strongly alters during both synthesis methods, however the abundance of small pore size in laser treatments is relatively higher than the that of the other technique. In comparison, the laser ablation demonstrates a relatively smaller desorption temperature against chemical one, mainly owing to the formation of larger pore size/volume. Generally, the hydrogen trapping efficiently takes place in the laser treated samples against chemical reduction method. The highest value of hydrogen storage ~1% (0.6% weight) is corresponding to 12.3% (13% weight) of nickel loading via the laser ablation (chemical reduction).
关键词: Hydrogen uptake,Nickel nanoparticles,Laser ablation,Chemical reduction,Pore size
更新于2025-09-23 15:22:29
-
Copper doped nickel aluminate: Synthesis, characterisation, optical and colour properties
摘要: Novel environment friendly inorganic nano green pigments, Ni1-xCuxAl2O4 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) were successfully synthesized by simple, cost effective sol-gel method using citric acid as a gelling agent. Synthesized nano pigments were characterised by powder XRD, FT-IR, UV-DRS, SEM-EDX and TEM. Distribution of elements such as Ni, Cu, Al and O for the pigment Ni0.98Cu0.02Al2O4 was authenticated by elemental mapping analysis. The color parameters were studied using CIE-LAB parameters. It is evident from the DRS measurement that the band gap energy of NiAl2O4 (3.11eV) has been massively diminished to 2.63 eV when x = 0.02, unexpectedly changed the color of the pigment from cyan to green. While x = 0.1 the pigment color has turned into grey and the corresponding band gap condensed into 2.17 eV. Effect of mineralisers like NaF, CaF2, NH4H2PO4 and Li2CO3 on the color of Ni0.98Cu0.02Al2O4 was investigated.
关键词: chemical resistance,sol-gel,citric acid,Nickel aluminate,green pigment
更新于2025-09-23 15:22:29
-
Simultaneous photocatalytic reduction/degradation of divalent nickel/naphthalene pollutants in aqueous solutions
摘要: Toxic heavy metals and organic pollutants are simultaneously exist in the wastewater of some industries. This study explores reduction of toxic divalent nickel ions, from either nitrate or sulfate salts, coupled with naphthalene (NA) degradation using titania photocatalyst in an efficient photo-sono reactor. A synergism appears when reduction and degradation treatments perform simultaneously in the media. With initial concentrations of [Ni(II)]0 = 5 mg/L and [NA]0 = 10 mg/L, under dominant mild conditions, removal efficiencies of 54.5% and 56.6% were corresponding to Ni(II) and NA when nickel nitrate was used, respectively. These efficiencies were enhanced to 59.2% and 57.5% with nickel sulfate, all after 90 min operations. For evaluating the mechanism of reactions, reactive oxygen species analysis on solutions as well as FTIR, SEM and BET analysis on the titania nanoparticles, before and after usage, were performed. The reaction kinetic was also followed for individual species in the mixed solution and accordingly, the energy consumption was evaluated for one order of magnitude decrease in pollutants concentration. The high performance of the used method was revealed in comparison to the similar reported reduction/degradation processes.
关键词: divalent nickel,kinetic,energy consumption,naphthalene,photocatalytic treatment
更新于2025-09-23 15:22:29
-
Influence of silicon dioxide medium on the structural and electrical properties of nickel zinc ferrite
摘要: Nickel zinc ferrite [(Ni 0:65 Zn 0:35 Fe 2 O 4)x / (SiO 2)1(cid:0)x where, x = 1.0, 0.85, 0.65, 0.50, 0.35, and 0.15] is synthesized using the glyoxylate precursor method. The synthesis, characterization, and electrical study of nickel zinc ferrites/SiO 2 powder with low dielectric constant, very low conductivity, and loss tangent with low frequency dispersion, suitable for good insulators, is reported here. X-ray diffraction, TGA, and FT-IR studies are employed for identifying crystalline phases and structure. Crystallite size is calculated by the Scherrer formula and Williamson–Hall equation and found to fall in the range of 4.9–25 nm. TEM of the samples shows spherical particles of uniform size distribution and the spotty rings of SAED patterns are analyzed for identifying the crystal planes. The study confirms a simple and efficient way to synthesize single-phase nickel zinc ferrite (NZFO) spherical particles of nano size ( (cid:25) 15 nm at 1000 ? C) with lower particle agglomeration in comparison to any other methods. Electrical studies are carried out using an LCR meter. The observed value of dielectric constant falls in the range of 10–80, loss tangent in the range of 0.05–0.4, and electrical conductivity in the range of 10 (cid:0)4 to 10 (cid:0)7 mho m (cid:0)1 . These values are respectively functions of temperature, frequency, and the ferrite content in ferrite/SiO 2 samples. A proper selection of ferrite concentration in the silica medium enables one to prepare NZFO/SiO 2 material of very low loss tangent with dielectric constant in the range of 10–80.
关键词: tetraethyl orthosilicate,dielectric constant,Nickel zinc ferrite,dielectric conductivity,loss tangent,ethylene glycol
更新于2025-09-23 15:21:21