修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

153 条数据
?? 中文(中国)
  • High Power Laser‐Driven Ce <sup>3+</sup> ‐Doped Yttrium Aluminum Garnet Phosphor Incorporated Sapphire Disc for Outstanding White Light Conversion Efficiency

    摘要: A facile synthesis method for the development of Y3 (cid:2) xAl5O12:xCe3t (0.03–0.24) yellow phosphor via an auto-combustion method and fabrication of phosphor-incorporated sapphire disc (PISD) of various dimensions is reported. The photoluminescence (PL) intensity for the optimized concentration of Ce3t-doped yttrium aluminum garnet (YAG) phosphor is recorded at 550 nm wavelength under the excitation wavelength of 445 nm from a high power blue laser diode. The developed PISD exhibits high stability and luminescence. The blue laser diode is a promising candidate to revolutionize the luminous intensity of the white light by several orders of magnitude as compared with the existing blue light-emitting diodes. This emerging technology has an extremely bright future with endless uses of tunable power of the laser that controls the intensity of the emitted white light. Hence, this new approach provides a paradigm shift to produce highly ef?cient white light based on PISD integrated with blue laser diode as compared with the conventional technology. Moreover, such con?gurations allow more styling and packaging ?exibility that reduces the overall size of the fabricated unit and makes it favorable for various lighting applications.

    关键词: blue laser diodes,photoluminescence,optical geometry,white light conversion,yellow phosphor

    更新于2025-11-21 11:18:25

  • Extraction of rare earth oxides from discarded compact fluorescent lamps

    摘要: Discarded CFL samples are evaluated as a potential source of REEs (Y, Eu, Ce, Tb). The phosphors powder obtained from mechanical separation contains 31% rare earth values. The quantitative XRD analysis of phosphor sample yielded 39.9% red (YOX: Y1.90Eu0.10O3), 14.6% green (CAT: Al11Ce0.67MgO19Tb0.33), and 21.4% blue (BAM: Al10.09Ba0.96Mg0.91O17: Eu2+) phosphor along with 14.1% silica. Planetary ball milling was found promising in the liberation of REEs from given phosphor sample. A short milling of 20–30 min and 3–4 M acid concentration was found adequate for optimal recovery (> 90%) of REEs. Calcination of the precipitates resulted in the formation of REO with Y-Eu purity of > 98% and > 90% recovery rate. Eu, Y phase dissolution behavior was found completely different than Ce, Tb phase due to inert nature of Al11Ce0.67MgO19Tb0.33 till 120 min milling and 6 M acid concentration in leaching. Excessive milling promotes overall dissolution along with impurities dissolution and which further restrict the precipitation process. Based on the complete material balance 13 g of a mixed oxide of Y and Eu can be obtained from 100 units of CFLs.

    关键词: Discarded CFL,Phosphor,Rare earth elements,Leaching,Mechanical milling

    更新于2025-11-21 11:18:25

  • White light emitting thermally stable bismuth phosphate phosphor Ca <sub/>3</sub> Bi( <scp>PO</scp><sub/>4</sub> ) <sub/>3</sub> :Dy <sup>3+</sup> for solid state lighting applications

    摘要: White light emitting dysprosium doped Ca3Bi(PO4)3 phosphor was successfully synthesized via co-precipitation method for the first time and the structural, vibrational, morphological and luminescent properties have been investigated for solid state lighting applications. The X-ray diffraction (XRD) and structural refinement studies reveal that the synthesized phosphors consist of single phase with cubic structure. The field emission scanning electron microscopy (FE-SEM) images reveal that the as-synthesized phosphor has micron size with an irregular shape. Under near ultraviolet (n-UV) and blue excitation, the phosphor exhibits white light emission via a combination of blue (~451 nm) and yellow (~575 nm) emission bands. The optimized concentration of Dy3+ ions is 6.0 mol % after which the concertation quenching takes place. The process of energy transfer between Dy3+ ions is due to dipole-dipole interaction, which was confirmed by applying Dexter and Reisfeld’s Energy Transfer (ET) formula. The CIE chromaticity coordinates for the optimized phosphor were (0.329, 0.377), which lie in the white light region. The emission intensity remains to 83.41% at 373 K to that of at room temperature, which indicates good thermal stability. The above mentioned results demonstrate that Ca3Bi(PO4)3 is a potential phosphor for solid state lighting applications.

    关键词: White LEDs,Structural and luminescent properties,White light emission,Phosphor,Thermally stable

    更新于2025-11-21 11:18:25

  • General Synthesis of Ordered Mesoporous Rare-Earth Orthovanadate Thin Films and Their Use as Photocatalysts and Phosphors for Lighting Applications

    摘要: Herein, the block copolymer templating sol-gel synthesis of a novel class of ternary oxide nanomaterials is reported. NdVO4, EuVO4, GdVO4, DyVO4, YVO4, and TmVO4 have been prepared as open mesoporous films by the dip-coating method using hydrated rare-earth nitrate salt precursors along with vanadium oxytrichloride. All materials crystallize in the tetragonal ZrSiO4-type structure with space-group I41/amd. Short-term treatment at 550 °C is found sufficient to initiate crystallization. Characterization via X-ray and electron diffraction, Raman and X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry confirms the single-phase nature and uniformity of the different orthovanadates with tailorable crystallite sizes. The integrated results from electron and atomic force microscopy, Kr-physisorption as well as in-situ and ex-situ synchrotron-based small-angle X-ray scattering reveal that the porosity persists throughout the thickness of films and the mesoscopic ordering is retained even after heating in air at 700 °C. Photobleaching experiments indicate that the sol-gel derived materials, showing an indirect band gap transition at (3.8±0.1) eV, exhibit good photocatalytic properties—the activity is highly superior to that of bulk films of the same nominal composition. Moreover, when doping GdVO4, YVO4, and solid solution GdVO4-YVO4 with trivalent rare-earth ions such as Eu3+, Dy3+, Er3+, or Tm3+ ions, the films hold promise as phosphors for lighting applications, which might pave the way toward development of (3-dimensional) intricate nanocomposites with unprecedented functionalities.

    关键词: Block copolymer templating,ternary metal oxide nanostructure,photocatalyst,phosphor,sol-gel chemistry

    更新于2025-11-21 10:59:37

  • Highly efficient rare-earth-free deep red emitting phosphor La <sub/>2</sub> Li <sub/>1?y</sub> Sb <sub/>1?x</sub> O <sub/>6</sub> : <i>x</i> Mn <sup>4+</sup> , <i>y</i> Mg <sup>2+</sup> : application in high-power warm w-LEDs

    摘要: Phosphor-in-glass (PiG), which serves as both a luminescent convertor and organic encapsulation material in high-power white light-emitting diodes (w-LEDs), has become a prospective research hotspot owing to its high transparency and thermal stability. However, YAG:Ce3+ PiG-based LED devices still suffer from a lack of a red component. Therefore, the development of red phosphors with excellent quantum efficiency and superior thermal stability is urgent. Herein, a highly efficient La2Li1?ySb1?xO6:xMn4+,yMg2+ red phosphor with a broadband emission ranging from 670 to 720 nm was fabricated via a conventional solid-state reaction. By co-doping Mg2+ in La2LiSbO6:Mn4+, the emission intensity was enhanced significantly, which reaches as high as 10 times that of the single-doped La2LiSbO6:Mn4+. It is proposed that the Mg2+ dopant can compensate imbalanced charges for the substitution of Sb5+ by Mn4+ and interrupt adverse energy transfer among the Mn4+ activators. Impressively, a maximum quantum yield of up to 80.3% is achieved and about 80% emission intensity is retained at the temperature of 423 K. Furthermore, the crystal field strength (Dq) and Racah parameters (B and C) together with the nephelauxetic ratio (b1) were calculated based on the obtained spectroscopic data. By embedding the red-emitting La2LiSbO6:Mn4+,Mg2+ phosphor and yellow-emitting YAG:Ce3+ phosphor into TeO2-based glass, an inorganic PiG composite as a color converter to replace organic silicone was acquired. The excellent optical parameters and tunable chromaticity feature of the fabricated w-LEDs were achieved by adjusting the mass ratio of La2LiSbO6:Mn4+,Mg2+ to YAG:Ce3+ in the PiG plate, where the correlated color temperature changed from cool white (6555 K) to warm (4130 K) and the color rendering index increased from 73.7 to 86.6 under an operating current of 300 mA.

    关键词: Phosphor-in-glass,quantum yield,red phosphor,Mg2+,thermal stability,w-LEDs,Mn4+

    更新于2025-11-20 15:33:11

  • Broad-band emission and color tuning of Eu3+-doped LiCa2SrMgV3O12 phosphors for warm white light-emitting diodes

    摘要: In this study, series of Eu3+-doped LiCa2SrMgV3O12 (LCSMV) phosphors with broad-band emission and color tunable feature were prepared via solid phase reaction. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results presented a pure cubic phase product with micron-sized and homogeneous distribution of element. Their spectroscopic properties were investigated systematically by photoluminescence excitation (PLE) and emission (PL) spectra, temperature-dependent PL spectra and luminescence decay curves. The LCSMV phosphors displayed a strong absorption to ultraviolet light and a broad cyan emission. Moreover, in Eu3+-doped LCSMV phosphors, Eu3+ ion characteristic emissions at 589, 610, 651 and 705 nm, attributing to the 5D0→7F1, 7F2, 7F3 and 7F4 transitions, were observed. Along with Eu3+ ion concentrations increasing, the emission colors could be readily tuned from cyan to orange and the decay lifetimes of (VO4)3- became shorter. Meanwhile, electric dipole-dipole interaction was responsible to energy migration from (VO4)3- groups to Eu3+ ions. Further, the quantum efficiency (QE) values were estimated to be 32.5% for LCSMV host and 39.3% for LCSMV: 0.01Eu3+ sample. Finally, a LED lamp was prepared by integrating the blend of the LCSMV: 0.01Eu3+ phosphors and commercial blue-emitting BaMgAl10O17:Eu2+ phosphors with NUV chip (365 nm) and exhibited warm white light (CCT = 3655 K, Ra = 90), which may be applied in lighting and display field.

    关键词: Self-activated luminescence,Color tunable,Light-emitting diode,Vanadate phosphor,Color rendering index,Broad-band emission

    更新于2025-11-20 15:33:11

  • Synthesis, energy transfer and multicolor luminescent property of Eu3+-doped LiCa2Mg2V3O12 phosphors for warm white light-emitting diodes

    摘要: In this study, Eu3+-doped LiCa2Mg2V3O12 (LCMVO) phosphors with multicolor luminescent property were prepared by the solid phase reaction. Their structure, morphology and luminescent property were studied systematically by X-ray diffraction, scanning electron microscope and photoluminescence spectra. The LCMVO phosphors showed pure cubic crystal structure with space group (3Ia d ) and irregular spherical morphology. The excitation spectra showed a strong absorption to ultraviolet light. Under the excitation wavelength at 360 nm, they exhibited a cyan emission with a luminescence center at 520 nm. When Eu3+ ions were doped into LCMVO system, the Eu3+ characteristic emissions were also observed and the emission colors were tuned from cyan to orange via adjusting Eu3+ ion concentration. Further, electric dipole-quadrupole interaction and luminescence decay curves were adopted to explain the energy transfer from (VO4)3- to Eu3+. The emission spectra of as-obtained phosphors at different temperature were measured to evaluate their thermal stability. The quantum efficiency values were measured to be 42.5% for LCMVO host and 38.6% for LCMVO: 0.01Eu3+ sample. The final prepared LED lamp showed easeful warm white light with suitable Ra of 89 and CCT of 3847 K, respectively. These results suggest LCMVO phosphors may be applied in near ultraviolet chip-excited white light-emitting diodes.

    关键词: energy transfer,multicolor luminescent,self-activated luminescence,excitation and emission spectra,vanadate phosphor,UV-LED

    更新于2025-11-20 15:33:11

  • Novel Ca2GdTaO6:Mn4+,M (M = Li+, Na+, K+, and Mg2+) red phosphors for plant cultivation light-emitting diodes: Synthesis and luminescence properties

    摘要: Recently, Mn4+-activated red phosphors are becoming potential color converters for application in indoor plant cultivation light-emitting diodes, owing to their satisfactory luminescence properties as well as low cost. Herein, novel Mn4+-activated double perovskite-type Ca2GdTaO6 phosphors have been synthesized by a high-temperature solid-state reaction method in air, which exhibited a broad excitation band with two peaks locating at 355 nm and 496 nm in range of 250-600 nm and had an intense red emission peaking at 676 nm due to Mn4+:2Eg→4A2g spin-forbidden transition ranging from 650 to 750 nm under 355 nm excitation. Concentration-dependent luminescence properties were studied. The optimal Mn4+ doping concentration in Ca2GdTaO6 host was 0.004, and the concentration quenching mechanism was determined to be a dipole-dipole interaction among Mn4+ ions. Furthermore, the Ca2GdTaO6:0.004Mn4+ phosphor possessed the internal quantum efficiency up to 33% when excited at 355 nm. Besides, the decay lifetimes of Ca2GdTaO6:Mn4+ presented a reasonable downward trend with increasing Mn4+ concentration. In addition, the effect of charge compensation (co-doping of Li+, Na+, K+, and Mg2+ ions) on the luminescent properties of Ca2GdTaO6:Mn4+ phosphors was also investigated.

    关键词: Indoor plant cultivation,Ca2GdTaO6,Mn4+,Double perovskite,Luminescence properties,Red phosphor

    更新于2025-11-20 15:33:11

  • Tricolor- and White Light–Emitting Ce <sup>3+</sup> /Tb <sup>3+</sup> /Mn <sup>2+</sup> -Coactivated Li <sub/>2</sub> Ca <sub/>4</sub> Si <sub/>4</sub> O <sub/>13</sub> Phosphor via Energy Transfer

    摘要: Single-component tunable Li2Ca4Si4O13:Ce3+,Tb3+,Mn2+ phosphors were successfully synthesized at 950 °C. Li2Ca4Si4O13:Ce3+,Tb3+ exhibits two luminescence peaking at 430 and 550 nm, which originated from the allowed 5d → 4f transition of the Ce3+ ion and the 5D4 → 7FJ (J = 6, 5, 4, 3) transition of the Tb3+ ion, respectively. Moreover, by codoping Ce3+ ions in the Li2Ca4Si4O13:Mn2+ system, yellow-red emission from the forbidden transition of Mn2+ could be enhanced. Under UV excitation, dual energy transfers (ETs), namely, Ce3+ → Mn2+ and Ce3+ → Tb3+, are present in the Li2Ca4Si4O13:Ce3+,Tb3+,Mn2+ system. The ET process was confirmed by the overlap of the excitation spectra, variations in the emission spectra, ET efficiency, and decay times of phosphors. In addition, quantum yields and CIE chromatic coordinates are presented. The emission color of these phosphors can be tuned precisely from blue to green via ET of Ce3+ → Tb3+ and from blue to yellow via ET of Ce3+ → Mn2+. White light can also be achieved upon excitation of UV light by properly tuning the relative composition of Tb3+/Mn2+. This result indicates that the developed phosphor may be regarded as a good tunable emitting phosphor for UV light-emitting diodes.

    关键词: phosphor,energy transfer,Mn2+,Tb3+,Li2Ca4Si4O13,Ce3+,white light-emitting diodes

    更新于2025-11-14 15:29:11

  • Broadband emission of single-phase Ca3Sc2Si3O12:Cr3+/Ln3+ (Ln = Nd, Yb, Ce) phosphors for novel solid-state light sources with visible to near-infrared light output

    摘要: Novel single-component phosphors Ca3Sc2Si3O12:Cr3+/Ln3+ (CSS:Cr3+/Ln3+, Ln = Nd, Yb, Ce) with broadband near-infrared (NIR) emissions are synthesized. Their phase structure, photoluminescence properties and energy transfer between Cr3+ and Ln3+ ions are investigated. In the CSS host, Cr3+ ions occupy Sc3+ sites with low-field octahedral coordination, and thus show a broadband emission in 700-900 nm under the blue light excitation. Nd3+, Yb3+ and Ce3+ ions substitute Ca2+ sites in CSS, where Nd3+ and Yb3+ ions emit the NIR light in 900-1100 nm and their excitation efficiencies at ~450 nm are greatly enhanced by utilizing the energy transfer from Cr3+ to Nd3+/Yb3+ ions. Ce3+ ions can further enhance the absorption of CSS:Cr3+/Ln3+ phosphors to the blue light, and at the same time contribute to the visible emission in 480-650 nm. Furthermore, CSS:Cr3+/Ln3+ phosphors show good thermal stability, and approximately 79% of the initial emission intensity is sustained at 150 oC. A phosphor-converted LED (pc-LED) prototype is fabricated by integrating the as-prepared phosphor CSS:Cr3+/Ln3+ and the commercial phosphor CaAlSiN3:Eu2+ with the blue LED chip, showing a super broadband emission ranging from 450 to 1100 nm. This finding shows the potential application of CSS:Cr3+/Ln3+ phosphors in broadband NIR pc-LEDs or super broadband LED sources with visible to NIR light output.

    关键词: Near-infrared,Phosphor-converted LEDs,Photoluminescence,Ca3Sc2Si3O12

    更新于2025-11-14 15:28:36