修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

167 条数据
?? 中文(中国)
  • [IEEE 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT) - Guangzhou, China (2019.5.19-2019.5.22)] 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT) - Terahertz quarter wave plate design based on metasurface

    摘要: Silicon photonic interconnect (SPI) is an attractive alternative for the power-hungry and low-bandwidth metallic interconnect in multiprocessor systems-on-chip (MPSoCs). When employing SPIs for wavelength-division multiplexing (WDM)-based applications, it is essential to precisely align the central wavelengths of different photonic devices (e.g., photonic switches) to achieve a reliable communication. However, SPIs are sensitive to fabrication nonuniformity (a.k.a. fabrication process variation), which results in wavelength mismatches between devices, and hence performance degradation in SPIs. This work presents a computationally efficient and accurate bottom-up approach to study the impact of fabrication process variations on passive silicon photonic devices and interconnects. We first model the impact of process variations at the component level (i.e., strip waveguides), then at the device level (i.e., add-drop filters and photonic switches), and finally at the system level (i.e., passive WDM-based SPIs). Numerical simulations are performed not only to evaluate the accuracy of our method, but also to demonstrate its high-computational efficiency. Furthermore, our study includes the design, fabrication, and analysis of several identical microresonators to demonstrate process variations in silicon photonics fabrication. The efficiency of our proposed method enables its application to large-scale passive SPIs in MPSoCs, where employing time-consuming numerical simulations is not feasible.

    关键词: Fabrication non-uniformity,reliability,silicon photonic interconnects,wavelength-division multiplexing

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE) - Aswan City, Egypt (2019.10.23-2019.10.25)] 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE) - Thermal Performance Evaluation of 1500-VDC Photovoltaic Inverters Under Constant Power Generation Operation

    摘要: A technique is described, to efficiently evaluate the reliability of an RF semiconductor device when several different mechanisms contribute simultaneously to its wearout. This is of interest for present-day GaN HEMT devices because symptoms of several simultaneous degradation mechanisms have been reported widely. The technique involves first finding DC parameters that are “signatures” of each mechanism. Then, separate DC-stress lifetests are performed to find the degradation rates for the signature parameters, at several temperatures, and the corresponding Arrhenius curves. Next, an RF-stress lifetest (with only one stress condition) is performed, while monitoring all of the signature parameters and the RF performance. This is utilized to determine the “scaling factors” between the rates of change in the DC lifetests and the rates of change in the RF application. Applying these scaling factors to the original Arrhenius curves gives an “overall” Arrhenius plot for the RF application with several different lines, for the different degradation mechanisms. The technique can be extended to further degradation mechanisms, by conducting further DC and RF lifetests while monitoring appropriate signature parameters.

    关键词: semiconductor device reliability,lifetesting,gallium nitride,HEMTs,Failure analysis

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Fault Current Correction Strategies for Effective Fault Location in Inverter-Based Systems

    摘要: Despite the significant attention transmission switching (TS) has gained over the last decade, important challenges remain. This paper addresses the state-of-the-art challenges of TS by studying the benefits of corrective switching using authentic Independent System Operator of New England (ISO-NE) data and software. Thus, the results and analyses presented in this paper are more convincing than any other study conducted to date. TS is successfully implemented for reliability applications as a corrective mechanism. ISO-NE maintains N?1 reliability based on the preventive dispatch and enforcing proxy reserve requirements along with N?1?1 reliability based on reserves and interface limits. This paper incorporates TS as a corrective mechanism in response to both the N?1 and N?1?1 events. Not only does this paper investigate the capability of corrective switching to alleviate thermal overloads but also the economic benefits of corrective switching with actual market data and in-house market software at ISO-NE. The results show that corrective TS can improve the reliability of the system and save millions of dollars each year by providing a cheaper corrective action alternative for ISO-NE. The results also suggest that TS would provide more significant benefits for systems with more transmission congestion such as Pennsylvania New Jersey Maryland, Midcontinent Independent System Operator, and Electric Reliability Council of Texas.

    关键词: power system reliability,Interface limits,power transmission control,transmission switching,power system economics

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - a-Si:H/c-Si interface hydrogenation for implied V <sub/>oc</sub> = 755 mV in Silicon heterojunction solar cell

    摘要: Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.

    关键词: fatigue,power cycling (PC),insulated-gate bipolar transistors (IGBTs),thermal cycling (TC),reliability,optimization methods,finite-element (FE) methods,Aging,multiobjective

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - A Sunflower Receiver for Hybrid Photovoltaic-Solar Thermal Energy Conversion

    摘要: Field-programmable gate arrays (FPGAs) have been shown to provide high computational density and efficiency for many computing applications by allowing circuits to be customized to any application of interest. FPGAs also support programmability by allowing the circuit to be changed at a later time through reconfiguration. There is great interest in exploiting these benefits in space and other radiation environments. FPGAs, however, are very sensitive to radiation and great care must be taken to properly address the effects of radiation in FPGA-based systems. This paper will highlight the effects of radiation on FPGA-based systems and summarize the challenges in deploying FPGAs in such environments. Several well-known mitigation methods will be described and the unique ability of FPGAs to customize the system for improved reliability will be discussed. Finally, two case studies summarizing successful deployment of FPGAs in radiation environments will be presented.

    关键词: radiation effects,radiation hardening,field programmable gate arrays,integrated circuit reliability,Fault-tolerant systems

    更新于2025-09-19 17:13:59

  • Comparison and analysis of performance and degradation differences of crystalline-Si photovoltaic modules after 15-years of field operation

    摘要: This paper reports on a unique evaluation-opportunity for comparing modules from two-different manufacturers that were deployed for a long-period (~15 years) under similar circumstances: (a) for the same distributed, rural-power applications, (b) operating under the same climate-conditions and geographical area, (c) with devices manufactured and installed at the same time. But these modules had very different resulting observed changes in their operational and physical characteristics over their long field-exposures. The PV modules were dispersed in a tropical climate-zone (northern-region of Minas Gerais, Brazil). Visual inspections of the two-module sets concluded that one module source (SET A) had almost no encapsulant discoloration and few indications of delamination and corrosion. In contrast, the other module source (SET B) had significant yellowing/browning, widespread-areas of delamination, and fairly extensive interconnect-corrosion. The corresponding measured changes in the electrical characteristics were: SET A having average annual loss in power of 0.4–0.5%, and SET B with 2.3–3.7%/year over their installation times. Encapsulant discoloration and delamination provided the first clues to the measured differences in module performance and are attributed to the existing climate conditions of high-ultraviolet (UV) radiation exposures and high-ambient temperatures. The bases for the performance differences of these two module sets were examined using complementary electrical, physical and chemical characterization of the module materials. The primary goal of this paper is to identify the root causes for the degradation differences (one set meeting specifications, the other not), based upon the critical module materials properties/processing and climatic exposures.

    关键词: Reliability of PV modules,Encapsulants,Module performance loss,Failure rate,Degradation modes and mechanisms,EVA

    更新于2025-09-19 17:13:59

  • L vs. LCL Filter for Photovoltaic Grid-Connected Inverter: A Reliability Study

    摘要: The increasing use of photovoltaic systems entails the use of new technologies to improve the efficiency and power quality of the grid. System performance is constantly increasing, but its reliability decreases due to factors such as the uncontrolled operation, the quality of the design and quantity of components, and the use of nonlinear loads that may lead to distortion in the signal, which directly affects the life of the system globally. This article presents an analysis of the reliability of a single-phase full-bridge inverter for active power injection into the grid, which considers the inverter stage with its coupling stage. A comparison between an L filter and an LCL filter, which comprise the coupling stage, is made. Reliability prediction is based on metrics, failure rate, mean time between failures, and total harmonic distortion. The analysis and numerical simulation are performed. Finally, filter considerations are suggested to extend the reliability of the inverter in a photovoltaic system.

    关键词: photovoltaic systems,LCL filter,L filter,reliability,total harmonic distortion

    更新于2025-09-19 17:13:59

  • [IEEE 2019 IEEE 13th International Conference on ASIC (ASICON) - Chongqing, China (2019.10.29-2019.11.1)] 2019 IEEE 13th International Conference on ASIC (ASICON) - Design of Current-Assisted Photonic Demodulator (CAPD) for Time-of-Flight CMOS Image Sensor

    摘要: Despite the significant attention transmission switching (TS) has gained over the last decade, important challenges remain. This paper addresses the state-of-the-art challenges of TS by studying the benefits of corrective switching using authentic Independent System Operator of New England (ISO-NE) data and software. Thus, the results and analyses presented in this paper are more convincing than any other study conducted to date. TS is successfully implemented for reliability applications as a corrective mechanism. ISO-NE maintains N?1 reliability based on the preventive dispatch and enforcing proxy reserve requirements along with N?1?1 reliability based on reserves and interface limits. This paper incorporates TS as a corrective mechanism in response to both the N?1 and N?1?1 events. Not only does this paper investigate the capability of corrective switching to alleviate thermal overloads but also the economic benefits of corrective switching with actual market data and in-house market software at ISO-NE. The results show that corrective TS can improve the reliability of the system and save millions of dollars each year by providing a cheaper corrective action alternative for ISO-NE. The results also suggest that TS would provide more significant benefits for systems with more transmission congestion such as Pennsylvania New Jersey Maryland, Midcontinent Independent System Operator, and Electric Reliability Council of Texas.

    关键词: power system economics,transmission switching,power system reliability,Interface limits,power transmission control

    更新于2025-09-19 17:13:59

  • [IEEE 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring) - Rome, Italy (2019.6.17-2019.6.20)] 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring) - An 150 GHz Waveguide Bandpass Filter Based on Micro-satellite Platform

    摘要: Field-programmable gate arrays (FPGAs) have been shown to provide high computational density and efficiency for many computing applications by allowing circuits to be customized to any application of interest. FPGAs also support programmability by allowing the circuit to be changed at a later time through reconfiguration. There is great interest in exploiting these benefits in space and other radiation environments. FPGAs, however, are very sensitive to radiation and great care must be taken to properly address the effects of radiation in FPGA-based systems. This paper will highlight the effects of radiation on FPGA-based systems and summarize the challenges in deploying FPGAs in such environments. Several well-known mitigation methods will be described and the unique ability of FPGAs to customize the system for improved reliability will be discussed. Finally, two case studies summarizing successful deployment of FPGAs in radiation environments will be presented.

    关键词: radiation effects,radiation hardening,Fault-tolerant systems,integrated circuit reliability,field programmable gate arrays

    更新于2025-09-19 17:13:59

  • 23.4: <i>Invited Paper:</i> The Longevity Study for Hybrid Colloidal Quantum Dot Optoelectronic Devices

    摘要: The nano-scale size of colloidal quantum dots provide unique properties, such as strong luminescent efficiency, wavelength tunable emission, and narrow linewidth etc., which are desirable for high quality display devices. However, the reliability of these nanoparticles is always the center of attention when the commercialization issue is discussed. In this paper, we will review our latest result on the hybrid package method that can dramatically these magnificent optoelectronic materials . lifetime of improve the

    关键词: reliability tests,Light emitting diodes,colloidal quantum dots,solar cells

    更新于2025-09-19 17:13:59