- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Sol-gel processed vanadium oxide as efficient hole injection layer in visible and ultraviolet organic light-emitting diodes
摘要: Low-cost, high-throughput and scalable production currently boosts organic electronic device towards solution processing. Sol-gel processed aqueous vanadium oxide (h-VOx) is facilely synthesized and proven to be efficient hole injection layer (HIL) in visible and ultraviolet organic light-emitting diodes (OLEDs). Atomic force microscopy and X-ray/ultraviolet photoelectron spectroscopy measurements indicate that h-VOx behaves superior film morphology and exceptional electronic properties such as oxygen vacancy dominated non-stoichiometry and appropriate surface work function. With tris(8-hydroxy-quinolinato)aluminium as emitter, the visible OLED gives maximum luminous and power efficiencies of 6.3 cd/A and 3.2 lm/W, respectively, which are slightly superior to the counterpart with vacuum thermally-evaporated VOx (5.6 cd/A and 2.7 lm/W). With 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole as emitter, the ultraviolet OLED produces attractive short-wavelength emission of 379 nm with full width at half maximum of 40 nm and improved durability. The maximum radiance and external quantum efficiency reach 15.3 mW/cm2 and 2.92%, respectively, which are considerably enhanced in comparison with the corresponding reference (11.9 mW/cm2 and 2.32%). Current versus voltage characteristics and impedance spectroscopy analysis elucidate that h-VOx exhibits robust hole injection and accordingly high-performance OLEDs. Our results pave an alternative way for advancing organic electronic devices and VOx applications with solution process.
关键词: Organic light-emitting diode,Hole injection,Solution process,Vanadium oxide,Sol-gel method
更新于2025-11-20 15:33:11
-
Light-Stimulated Synaptic Transistors Fabricated by a Facile Solution Process Based on Inorganic Perovskite Quantum Dots and Organic Semiconductors
摘要: Implementation of artificial intelligent systems with light-stimulated synaptic emulators may enhance computational speed by providing devices with high bandwidth, low power computation requirements, and low crosstalk. One of the key challenges is to develop light-stimulated devices that can response to light signals in a neuron-/synapse-like fashion. A simple and effective solution process to fabricate light-stimulated synaptic transistors (LSSTs) based on inorganic halide perovskite quantum dots (IHP QDs) and organic semiconductors (OSCs) is reported. Blending IHP QDs and OSCs not only improves the charge separation efficiency of the photoexcited charges, but also induces delayed decay of the photocurrent in the IHP QDs/OSCs hybrid film. The enhanced charge separation efficiency results in high photoresponsivity, while the induced delayed decay of the photocurrent is critical to achieving light-stimulating devices with a memory effect, which are important for achieving high synaptic performance. The LSSTs can respond to light signals in a highly neuron-/synapse-like fashion. Both short-term and long-term synaptic behaviors have been realized, which may lay the foundation for the future implementation of artificial intelligent systems that are enabled by light signals. More significantly, LSSTs are fabricated by a facile solution process which can be easily applied to large-scale samples.
关键词: light-stimulated synaptic transistors,solution process,organic semiconductors,blended materials,inorganic halide perovskite quantum dots
更新于2025-11-19 16:56:42
-
Asymmetric Pentacenes for Solution-Processed Organic Field-Effect Transistors
摘要: Background: Symmetrically substituted pentacenes have been traditionally used as semiconductors for solution-processed p-channel Organic Field Effect Transistors (OFETs). The aims of this paper are to introduce asymmetrically substituted pentacenes in the active layer and to examine the impact of the polyaromaticity of the pendant groups on the device characteristics. Methods: Research and online content related to asymmetrically substituted pentacenes is reviewed, the synthesis of the different pentacenes is described and the procedure used to introduce these semiconductors in devices is detailed. Comparison with a reference material is provided. Results: Extension of the polyaromaticity of the pendant group of pentacene greatly contributes to enhance the device performances. Impact of the pendant group on the morphology of the active layer is evidenced by the roughness decreasing with the increase of aromatic ring in the substituent. Conclusion: We demonstrate the extension of the π-conjugation of the aromatic end-group to drastically impact both ON/OFF ratio and charge carrier mobilities, mainly due to various degree of crystal formation characteristics in the film. Best results were obtained with the most extended one, namely the anthracene moiety which showed a mobility comparable to that of the benchmark TIPS-pentacene with OFETs that used hexamethyldisilazane as the gate dielectric passivation layer.
关键词: solution-process,semiconductor,organic materials,OFET,Mobility,TIPS-pentacene
更新于2025-09-23 15:23:52
-
Highly Transparent, Flexible Conductors and Heaters Based on Metal Nanomesh Structures Manufactured Using an All Water-Based Solution Process
摘要: Metal mesh is a promising material for flexible transparent conducting electrodes due to its outstanding physical and electrical properties. The excellent control of the sheet resistance and transmittance provided by the metal mesh electrodes is a great advantage for microelectronic applications. Thus, over the past decade, many studies have been performed in order to realize high-performance metal mesh; however, the lack of cost-effective fabrication processes and the weak adhesion between the metal mesh and substrate have hindered its widespread adoption for flexible optoelectronic applications. In this study, a new approach for fabricating robust silver mesh without using hazardous organic solvents is achieved by combining colloidal deposition and silver enhancement steps. The adhesion of the metal mesh was greatly improved by introducing an intermediate adhesion layer. Various patterns relevant to optoelectronic applications were fabricated with a minimum feature size of 700 nm, resulting in high optical transmittance of 97.7% and also high conductivity (71.6 Ω sq-1) of the metal mesh. In addition, we demonstrated an effective transparent heater using the silver mesh with excellent exothermic behavior, which heated up to 245 °C with 7 V applied voltage.
关键词: solution process,flexible electrodes,transparent heaters,metal nanomesh,transparent electrodes
更新于2025-09-23 15:23:52
-
Nano-rheology printing of sub-0.2 <i>μ</i> m channel length oxide thin-film transistors
摘要: Down-scaling of the channel length of a fully solution-processed oxide thin-film transistor (TFT) to the nanometer-scale is the key to accessing next-generation devices for Internet-of-Things technology. In this work, we report on the fabrication of an oxide TFT with a channel length of 160 nm, which is far less than those obtained by the current direct-printing techniques, by a newly developed nano-rheology printing (nRP) method. The device had an on/off current ratio, subthreshold voltage, hysteresis, and field-effect mobility of approximately 107, 1.7 V, 0 V, and 0.16 cm2 V s-1, respectively. The key to achieving the sub-micron channel printed TFT is the introduction of a new amorphous La–Ru–O material, which exhibits relatively good conductivity and excellent nRP properties at the nanoscale, for source/drain electrode patterns. Such a short-channel TFT would never be achieved with conventional printing methods, and hence, this approach is highly important for accessing next-generation low-cost, large-area and environmentally friendly printed electronics.
关键词: nano-rheology printing,thermal-imprinting,printed electronics,solution process,oxide thin-film transistor
更新于2025-09-23 15:23:52
-
Volatile Memory Characteristics of a Solution-Processed Tin Oxide Semiconductor
摘要: In this paper, we demonstrate and study volatile memory characteristics of the sol-gel SnOx semiconductor. The SnOx exhibits a significant self-rectifying behavior and high nonlinearity. Low reverse-biased currents and high forward-biased currents are observed in the positive and negative voltage regions, respectively. The rectifying ratio can reach 3.7 × 10^5, and the selection ratio (I@Vread/I@0.5Vread) is 10^2. A pinched current hysteresis is found in the forward-biased region, which indicates the volatile memory characteristics of the SnOx memory. The resistance ratio between the high-resistance state (HRS) and low-resistance state (LRS) is ~10^5. In addition, the stability test reveals that the memory can repeatedly operate for over 1.5 × 10^3 cycles.
关键词: Hysteresis,Solution process,Oxide semiconductor,Thin film,Electrical characteristics
更新于2025-09-23 15:22:29
-
Multi- and single-step in-situ microwave annealing as low-thermal-budget techniques for solution-processed indium–gallium–zinc oxide thin films
摘要: In this study, low-thermal-budget in-situ microwave annealing of solution-processed indium–gallium–zinc oxide (IGZO) thin films was investigated as a potential alternative to the conventional high-thermal-budget annealing process. The low-temperature baking and high-temperature post-deposition annealing of the solution-processed IGZO film were continuously performed using the same microwave equipment, leading to a reduced heat treatment processing time and temperature. We compared the electrical characteristics of IGZO thin film transistors (TFTs) produced using single- and multi-step in-situ microwave annealing methods with those of TFTs manufactured via the conventional annealing method and found that the proposed single-step microwave annealing method yielded TFTs with electrical characteristics better than those of the TFTs fabricated using the multi-step and conventional annealing methods. In addition, the reliability was evaluated by conducting positive and negative gate bias stress tests, in which the IGZO TFTs manufactured using the proposed heat treatment method proved superior to those fabricated via the conventional heat treatment method. We investigated the effects of heat treatment on the composition and energy band structures of the IGZO films by performing X-ray photoelectron spectroscopy analysis and found that the proposed in-situ microwave annealing method is more effective than the conventional method in solution processing.
关键词: low thermal budget,indium-gallium-zinc oxide,Microwave,solution process
更新于2025-09-23 15:21:21
-
Switchable Multi-Color Solution-Processed QD-laser
摘要: In this paper, for the first time, the switchable two-color quantum dot laser has been realized considering solution process technology, which has both simultaneous and lonely lasing capability exploiting selective energy contacts. furthermore, both channels can be modulated independently, which is a significant feature in high-speed data transmission. To this end, utilizing superimposed quantum dots with various radii in the active layer provides the different emission wavelengths. In order to achieve the different sizes of QDs, solution process technology has been used as a cost-effectiveness and fabrication ease method. Moreover, at the introduced structure to accomplish the idea, the quantum wells are used as separate selective energy contacts to control the lasing channels at the desired wavelength. It makes the prominent device have simultaneous lasing at different emission wavelengths or be able to lase just at one wavelength. the performance of the proposed device has been modeled based on developed rate equation by assuming inhomogeneous broadening of energy levels as a consequence of the size distribution of quantum dots and considering tunnel injection of carriers into the quantum dots via selective energy contacts. Based on simulation results, the simultaneous lasing in both or at one of two wavelengths 1.31 μm and 1.55 μm has been realized by the superimposition of two different sizes of InGaAs quantum dots in a single cavity and accomplishment of selective energy contacts. Besides, controlling the quantum dot coverage leads to managing the output power and modulation response at the desired wavelengths. By offering this idea, one more step is actually taken to approach the switchable QD-laser by the simple solution process method.
关键词: solution process technology,high-speed data transmission,multi-wavelength lasing,quantum dot laser,selective energy contacts
更新于2025-09-23 15:21:01
-
Aggregation-induced Emission Polymers for High Performance PLEDs with Low Efficiency Roll-off
摘要: As the congener of organic light-emitting diodes, polymeric light-emitting diodes (PLEDs) possess a number of distinct merits such as low-cost wet fabrication process, which enable them applicable in large-area flexible display and lighting fields. However, most emissive polymers used in PLEDs suffer from the aggregation-caused quenching (ACQ) effect, which makes the device show large efficiency roll-off. In this work, two polymers of pTPE-TPA-Cz and pTPE-TPA-Flu featuring aggregation-induced emission (AIE) characteristics were facilely synthesized through Suzuki-Miyaura polycoupling reaction by incorporating the AIE unit of TPE-TPA in their main chains. The resultant polymers possess good film-forming ability, excellent thermal stability and high photoluminescence quantum yields (PLQY) in their film states, facilitating the fabrication of PLEDs through solution process. Indeed, the PLEDs using pTPE-TPA-Cz and pTPE-TPA-Flu as emitting layers (EMLs) could achieve a maximum external quantum efficiency (EQE) of 3.26% (doped EML) and current efficiency of 3.69 cd A-1 (non-doped EML). Notably, all the devices exhibit a quite low efficiency roll-off. This work indicates that AIE polymers are ideal candidates for the construction high performance PLEDs with low efficiency roll-off.
关键词: Aggregation-induced emission,Photoluminescence quantum yields,Solution process,Efficiency roll-off,Polymeric light-emitting diodes
更新于2025-09-23 15:21:01
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Application of Solution-Processed CuSCN and AgSCN for High Efficient CdTe Solar Cells
摘要: Solution processed CuSCN and AgSCN were employed as Cu and Ag doping source in the CdTe solar cell. The effect of Cu and Ag on the CdTe device performance was investigated. It is promising to show that the CuSCN and AgSCN with similarity role to increase devices performance to power conversion efficiency to 17% and 16%, respectively. The benefit from CuSCN is that the dual role of CuSCN, one is the hole transport layer and one is Cu doping, while AgSCN with a higher resistive may play as Ag doping source with slower diffusion rate.
关键词: Solution Process,CdTe thin film solar cells,CuSCN,AgSCN
更新于2025-09-23 15:21:01