修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

51 条数据
?? 中文(中国)
  • Aluminum-Doped Zinc Oxide as Front Electrode for Rear Emitter Silicon Heterojunction Solar Cells with High Efficiency

    摘要: Transparent conductive oxide (TCO) layers of aluminum-doped zinc oxide (ZnO:Al) were investigated as a potential replacement of indium tin oxide (ITO) for the front contact in silicon heterojunction (SHJ) solar cells in the rear emitter configuration. It was found that ZnO:Al can be tuned to yield cell performance almost at the same level as ITO with a power conversion efficiency of 22.6% and 22.8%, respectively. The main reason for the slight underperformance of ZnO:Al compared to ITO was found to be a higher contact resistivity between this material and the silver grid on the front side. An entirely indium-free SHJ solar cell, replacing the ITO on the rear side by ZnO:Al as well, reached a power conversion efficiency of 22.5%.

    关键词: photovoltaics,silicon heterojunction,rear emitter,transparent conductive oxide

    更新于2025-11-14 15:25:21

  • Effect of front TCO on the performance of rear-junction silicon heterojunction solar cells: Insights from simulations and experiments

    摘要: In this study we make a detailed comparison between indium tin oxide (ITO), aluminum-doped zinc oxide (ZnO:Al) and hydrogenated indium oxide (IO:H) when applied on the illuminated side of rear-junction silicon heterojunction (SHJ) solar cells. ITO being the state of the art material for this application, ZnO:Al being an attractive substitute due to its cost effectiveness and IO:H being a transparent conductive oxide (TCO) with high-mobility and excellent optical properties. Through numerical simulations, the optically optimal thicknesses for a double layer anti-reflective coating system, consisting of the respective TCO and amorphous silicon oxide (a-SiO2) capping layers are defined. Through two-dimensional electrical simulations, we present a comparison between front-junction and rear-junction devices to show the behavior of series resistance (Rs) in dependence of the TCO sheet resistance (Rsh) and the device effective lifetime (τeff). The study indicates that there is a τeff dependent critical TCO Rsh value, above which, the rear-junction device will become advantageous over the front-junction design in terms of Rs. Solar cells with the respective layers are analyzed. We show that a thinner TCO optimized layer will result in a benefit in cell performance when implementing a double layer anti-reflective coating. We conclude that for a highest efficiency solar cell performance, a high mobility TCO, like IO:H, is required as the device simulations show. However, the rear-junction solar cell design permits the implementation of a lower conductive TCO in the example of the cost-effective ZnO:Al with comparable performance to the ITO, opening the possibility for substitution in mass production.

    关键词: Transparent conductive oxide,Sheet resistance,Series resistance,Rear-junction,Silicon heterojunction,Anti-reflective coating

    更新于2025-10-22 19:40:53

  • Nanostructured Transparent Conductive Electrodes for Applications in Harsh Environments Fabricated via Nanosecond Laser‐Induced Periodic Surface Structures (LIPSS) in Indium–Tin Oxide Films on Glass

    摘要: A self-organization phenomenon named laser-induced periodic surface structures (LIPSS) is utilized for pattern formation in indium–tin oxide (ITO) transparent conductive films coated on borosilicate glass. Stripe patterns with periodicities down to 175 nm are created by scanning the focused beam (30 μm spot diameter 1 e?2) of a nanosecond pulsed laser operating at 532 nm wavelength over ITO films. Highly ordered ITO-LIPSS are generated at a pulse duration of 6 ns, pulse frequencies between 100 and 200 kHz, pulse energies around 20 μJ, and laser spot scan speeds in the range of 50–80 mm s?1. Resulting nanopatterns are electrically conductive and feature improved optical transparency as well as stability against strong acids such as hydrochloric acid, sulfuric acid, and even aqua regia. The formation of mixed phases between ITO and silicon is considered to be the origin for the chemical robustness of laser patterned transparent conductive electrodes.

    关键词: laser-induced periodic surface structures (LIPSS),laser patterning,self-organization,indium–tin oxide (ITO),transparent conductive films (TCF)

    更新于2025-10-22 19:40:53

  • Study on the Adhesion Force Between Ga-Doped ZnO Thin Films and Polymer Substrates

    摘要: Flexible Ga doped ZnO (GZO) transparent conductive thin films were prepared on polycarbonate (PC) substrates at room temperature by magnetron sputtering. The adhesive property between the GZO film and the PC substrate was investigated quantitatively by the scratch test, which is designed for the quantitative assessment of the mechanical integrity of coated surfaces. The effect of the sputtering pressures on the adhesion forces for the GZO films was investigated. When the sputtering pressure varied from 0.2 to 0.5 Pa, no obvious adhesion force alteration was observed. However, when the sputtering pressure was increased to 0.7 Pa, the adhesion force was decreased. The lowest square resistance of the GZO film was 18.6 Ω/sq. Regardless of the sputtering pressure, the transmittance in the visible light was about 90%. When the sputtering pressure was 0.4 Pa, the optimal figure of merit (ΦTC) was 2.5 × 10?2 Ω?1, indicating that the optimal pressure was 0.4 Pa.

    关键词: Adhesion Force,Flexibility,ZnO Transparent Conductive Film

    更新于2025-09-23 15:23:52

  • Preparation of Monodispersed Nanoparticles of Transparent Conductive Oxides

    摘要: Generally, indium-tin-oxides (ITO) thin film is prepared by the sputtering process with ITO target, but only 20 % of ITO yielded from the target is deposited on the substrate. Namely, about 80 % ITO is exhausted by the deposition elsewhere far from the substrate. The recycling process of indium is limited so that ca. 20 % ITO of the starting material is lost without any recovery. Even if the recycling of ITO has been carried out in this process, we should prepare ITO target of 5 times more than apparent use of ITO on film. If we change it to printing process from the sputtering, the reduction in ITO use is expected as ca. 50 %, considering the increase in film thickness by printing. Our target technology also includes ITO nanoink for the project. As a result, monodispersed ITO nanoparticles (NPs) with a cubic shape were fabricated by using quaternary ammonium hydroxide-assisted metal hydroxide organogels. These NPs have perfect uniformity in size with beautiful shape, and perfect single crystalline structure including Sn. As we were attempted to make thin film with ITO nanoink, it was successfully fabricated below 200 nm in thickness and the resistivity was drastically decreased below 1.0 × 10–3 Ω cm after heat treatments. GZO nanoink as substitute of ITO has also been developed.

    关键词: indium tin oxide,transparent conductive oxides,uniform nanoparticles,shape control

    更新于2025-09-23 15:23:52

  • Characteristics of Ultrathin Ni Films

    摘要: Conductive and transparent ultra-thin Nickel films are grown by RF sputtering on fused silica substrates. The characteristics of Ni films (thickness, refractive index, and extinction coefficient) are obtained by fitting multi-angle spectrophotometric and ellipsometric data. Films thickness inferred by X ray reflection (XRR) measurements is in good accordance with ellipsometric results. XPS analysis reveals that Ni metal phase is present in the film surface together with Ni mixed oxide phases, which explains the high electrical stability of such films.

    关键词: optical measurements,ultrathin films,transparent conductive films,Ni films

    更新于2025-09-23 15:23:52

  • Effect of microwave irradiation on the electrical and optical properties of SnO2 thin films

    摘要: We report the electrical and optical characteristics of SnO2 thin films irradiated by microwaves (MWs) and grown using atomic layer deposition in a commercial MW oven operating at a frequency of 2.45 GHz. The properties of the MW-irradiated SnO2 thin films were compared with those of the as-deposited SnO2 thin films. After MW irradiation, the conductivity and transparency of the thin films were enhanced. In addition, the samples irradiated for 5 min showed optimal carrier concentration, Hall-mobility, resistivity, and transmittance values of 1.5 × 1020 cm-3, 4.6 cm2/V·s, 8 × 10-3 Ω·cm, and 95.77%, respectively. The improved properties of the MW-irradiated samples were attributed mainly to the formation of an oxygen vacancy in the SnO2 lattice during MW irradiation. Our results can be applied for the fabrication of pure SnO2-based transparent conductive oxides; these oxides are generally doped with other elements.

    关键词: SnO2,Transparent Conductive Oxide,Microwave Irradiation,Electrical and Optical Properties

    更新于2025-09-23 15:23:52

  • Marangoni interface self-assembly hybrid carbon nano-network for transparent conductive silicone rubber

    摘要: Inspired by compact one-dimensional (1D) and two-dimensional (2D) hybrid network like natural thrombosis and beaver’s dam, we use Marangoni interface self-assembly hybrid 1D carbon nanotube and 2D graphene (CNT+G) as continuously connected nano-network onto the surface of silicone ink coated silicone rubber. Both good optical transmittance and electrical conductivity demonstrated in the transparent conductive silicone rubber (TCSR). Besides, the TCSR also have excellent mechanical adhesion between the (CNT+G) film and silicone ink coated silicone rubber.

    关键词: Adhesion,Marangoni interface self-assembly,Graphene,CNT,Transparent conductive silicone rubber

    更新于2025-09-23 15:22:29

  • Transparent Conductive Materials (Materials, Synthesis, Characterization, Applications) || Metallic Oxides (ITO, ZnO, SnO <sub/>2</sub> , TiO <sub/>2</sub> )

    摘要: The material class of transparent conductive oxides (TCOs) combines two seemingly contradictory physical properties: high optical transmittance in the visible and near-infrared (NIR) spectral range (like insulators) and high electrical conductivity (like metals). These two key properties make TCO materials very well suited for transparent thin film electrodes for thin film solar cells, flat panel displays, light-emitting devices, or heated windows.

    关键词: ZnO,light-emitting devices,SnO2,Transparent Conductive Oxides,thin film electrodes,ITO,solar cells,TiO2,flat panel displays,TCOs

    更新于2025-09-23 15:21:21

  • Transparent Conductive Materials (Materials, Synthesis, Characterization, Applications) || Metal Nanowires

    摘要: Metal nanowires are one-dimensional entities of metals of either single crystalline or polycrystalline nature [1]. Metal nanowires have attracted tremendous research attention since the last two decades, because of their important applications in plasmonics [2], electronics [3], electrocatalysis [4], and so on. In the past decade, researchers have attempted to coat metal nanowires on a transparent substrate as a transparent conductive ?lm (TCF) [5–7]. The visible light transparency and the conductivity of TCFs on the basis of metal nanowires have improved rapidly, being comparable with the performance of the state-of-the-art indium tin oxide (ITO) TCFs [8–10]. The recognition of the potential applications of metal nanowire TCFs stimulates research zeal for the synthesis of metal nanowires. So far, a range of metal nanowires have been synthesized, including Ag nanowires (AgNWs) [11], Au nanowires (AuNWs) [12], Cu nanowires (CuNWs) [13], and Pt nanowires [14]. Bicomponent metal nanowires, such as Cu@Ni [15], Ag@Au [16], Cu@Ag [17], Ag@Ni [18], and Cu@Pt [19] core@shell nanowires, have also been synthesized. These nanowires have been coated on a substrate to produce TCFs, and the performance has been characterized. At early stage of the research on metal nanowire TCFs, the transparency was lower than 80%, and the sheet resistance was as large as several kΩ to MΩ. Both experimental investigation and theoretical modeling have been extensively carried out to improve the performance of metal nanowire TCFs.

    关键词: Core@shell nanowires,Transparent conductive films,Plasmonics,Electronics,Au nanowires,Metal nanowires,Ag nanowires,Cu nanowires,Electrocatalysis

    更新于2025-09-23 15:21:21