修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

全部产品分类
FELH1400 滤光片

FELH1400

分类: 滤光片

厂家: 索雷博

产地: 美国

型号: FELH1400

更新时间: 2024-06-05T09:23:38.000Z

产品价格:

立即查看报价

25.0 mm Premium Longpass Filter, Cut-On Wavelength: 1400 nm

下载规格书 下载规格书 立即咨询 获取报价 获取报价
收藏 收藏

顶刊高频之选

  • 专业选型 专业选型
  • 正规认证 正规认证
  • 品质保障 品质保障

严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。

概述

Thorlabs Inc的FELH1400是一款光学滤波器,波长为1417至2150 nm,中心波长(CWL)为1400 nm,阻挡波长为200至1383 nm,滤波器直径为25 mm(1.25英寸)。有关FELH1400的更多详细信息,请联系我们。

参数

  • 过滤器类型 / Filter Type : Longpass Filter
  • 阻挡波长 / Blocking Wavelength : 200 to 1383 nm
  • RoHS / RoHs : Yes
  • 过滤器形状 / Filter Shape : Round
  • 基底/材料 / Substrate/Material : UV Fused Silica
  • 表面质量 / Surface Quality : 40-20 scratch-dig

规格书

请提供您的邮箱下载规格书

怎么称呼您

接收邮箱

发送申请

AI 智能分析

SCI论文引用分析

该产品已被9篇SCI论文引用

基于平台30万篇光学领域SCI论文分析

  • 对行为中的幼年斑马鱼全脑神经元活动进行全光学成像与操控

    全光学探测群体神经元活动是破译支持大脑功能的神经回路机制的一种有前景的方法。然而,目前这种探测仅限于局部脑区。在此,我们将模式化光刺激整合到光片显微镜中,实现了对头部固定行为幼斑马鱼神经元活动的全脑同步靶向光遗传学操控与监测。利用该系统,我们对广泛表达光谱分离的钙指示剂GCaMP6f(用于监测)和活性执行器ChrimsonR(用于操控)的斑马鱼幼体进行任意选定神经元(三维空间内小至约10-20个神经元区域)的光刺激,并观测下游神经回路激活与行为产生过程。该方法使我们能够解析神经回路在大脑功能与行为产生中的因果作用。

    查看全文 >
  • 基于磁响应的AlGaAs纳米粒子中结构光增强二次谐波产生

    我们利用结构光激发亚波长AlGaAs纳米粒子的二次谐波效应,这些纳米粒子同时支持电多极和磁多极米氏共振。泵浦光束的矢量结构能够选择性调控米氏共振模式,并控制非线性场的产生强度。实验上我们观测到圆偏振矢量光束在磁偶极共振附近产生的二次谐波增强现象,并通过数值分解基频与二次谐波场的米氏型多极矩,使观测结果与理论预测相吻合。

    查看全文 >
  • 油样荧光高光谱成像及其在组分分析与厚度估算中的定量应用
    K均值聚类 主成分分析 荧光高光谱成像 油类检测

    对溢油事故进行快速响应与分析至关重要,但始终面临挑战。本研究开发了一套基于光栅-棱镜结构的紧凑型荧光高光谱系统,该系统能实现油类组分分析并对油膜厚度进行定量估算。该光谱仪波长范围为366-814纳米,光谱分辨率达1纳米。通过测定三种原油及其多种混合物的组分,验证了光谱系统方案的可行性。研究进一步发现油膜厚度与荧光高光谱强度呈线性关系,证实了利用荧光数据进行油膜厚度定量测量的可行性。该荧光高光谱成像系统不仅能实现油品识别、分布分析,还可检测油膜厚度,将其搭载于无人机等平台,在溢油事故应急中具有应用前景。

    查看全文 >
查看全部9篇引用论文
实验方案推荐
AI分析生成
  • 精密仪器实验方案

    1. 实验设计与方法选择:本研究构建了定制化全光学系统,整合图案化光刺激(使用数字微镜器件DMD)与光片显微镜技术,实现全脑成像与光遗传学操控同步进行。系统采用红移光遗传学激活剂ChrimsonR与钙指示剂GCaMP6f以最小化光谱串扰,并包含高速行为监测以研究神经元在行为中的作用。通过高速数据采集卡和LabView控制器实现光学元件校准与仪器同步。 2. 样本选择与数据来源:使用转基因斑马鱼幼体(受精后4-9天,如Tg(elavl3:H2B-GCaMP6f;elavl3:ChrimsonR-tdTomato)品系),实现GCaMP6f与ChrimsonR的泛神经元表达。斑马鱼在标准条件下饲养,实验经动物使用委员会批准。 3. 实验设备与材料清单:关键设备包括配备振镜的光片显微镜、DMD(V4100??椋轮菀瞧鳎?、sCMOS相机(Orca Flash 4.0,滨松)、CMOS相机(GO 5000,JAI)、激光器(Sapphire LP 488 100 CW,相干公司;MGL-W-589nm-2W,长春新产业;OBIS 561 nm LS 100 mW,相干公司)、物镜(如W N-Achroplan 20×/0.5,卡尔蔡司)、光学扩散器(OD;#48514,爱特蒙特)、数据采集卡(PCI-6733,USB-6363,美国国家仪器)及滤光片(如Di01-R405/488/594,Semrock)。材料包含汉克斯溶液、琼脂糖及CNQX、APV等化学试剂。 4. 实验流程与操作规范:系统同步执行容积成像(2.5-4 Hz)、靶向光刺激(基于神经元位置加载DMD图案)及行为监测(240 Hz)。流程包括光刺激精度校准、特定神经元激活(如下丘脑或被盖区)以及突触传递与行为(如尾部卷曲)评估。通过HCImage软件采集数据,Matlab进行同步分析。 5. 数据分析方法:采用分水岭算法对荧光图像进行配准与分割,基于GCaMP6f荧光变化(ΔF/F0)分析神经元反应,刺激后活性超过刺激前水平即判定为显著。统计分析使用Spearman相关性与均值±标准误。

    获取完整方案
  • 光电信息科学与工程实验方案

    1. 实验设计与方法选择:本研究采用结构光(方位角与径向偏振光束)激发AlGaAs纳米粒子的二次谐波效应。通过COMSOL Multiphysics有限元法数值模拟线性与非线性光学响应,包括本征模分析与多极分解。实验装置使用可调谐飞秒激光源进行非线性光谱测量。 2. 样品选择与数据来源:样品为定制晶圆制备的独立AlGaAs纳米盘,其特定尺寸(高度650纳米,直径935纳米)经扫描电子显微镜验证。数据源自数值模拟与实验测量。 3. 实验设备与材料清单:设备包含光学参量放大器(Hotlight Systems, MIROPA-fs-M)、Yb激光器(High Q Laser GmbH)、q板超表面、透镜组(Thorlabs AC254-200-C-ML, AC254-050-C-ML)、半波片(Thorlabs AHWP05M-1600)、滤光片(Thorlabs FELH1300, FGS900, FELH0650)、物镜(Mitutoyo MPlanApo NIR, Olympus MPlanFL N)、相机(Xenics Bobcat-320, Starlight Xpress Ltd Trius-SX694)、光谱仪(Ocean Optics QE Pro)及各类光学元件。材料为玻璃基底AlGaAs纳米粒子。 4. 实验流程与操作规范:泵浦光束经q板与偏振控制元件生成并整形后,通过物镜聚焦至纳米粒子样品。二次谐波信号由另一物镜收集,经滤光片处理后由CCD相机检测。通过调节激光波长进行光谱测量,并通过系统光谱函数实现信号归一化。 5. 数据分析方法:采用球坐标系多极分解分析散射场与SH场,结合数值模拟对比验证,并通过功率依赖性与光谱测量进行验证。

    获取完整方案
  • 光电信息材料与器件实验方案

    1. 实验设计与方法选择:本研究采用基于正置显微镜的自制系统进行电化学与发光电化学(ECL)测量,并施加光照。使用电化学工作站控制电化学过程。 2. 样本选择与数据来源:以玻碳电极(GCE)、铂丝和银/氯化银电极为工作电极、对电极和参比电极,汞灯作为光源。 3. 实验设备与材料清单:设备包括尼康Eclipse LV100ND显微镜、CH660D电化学工作站、Thorlabs FELH0500长通滤光片、Thorlabs PM100A光功率计、Andor SR303i-A光谱仪及Andor iXon897 EMCCD相机;材料包含鲁米诺和氢氧化钠溶液。 4. 实验流程与操作步骤:通过光照GCE表面诱导热电子-空穴对,对比有无光照条件下对鲁米诺电化学行为及ECL的影响。 5. 数据分析方法:每200毫秒记录一次ECL光谱,并绘制450纳米处ECL强度随时间变化的曲线。

    获取完整方案

获取完整实验方案

我们还有6 个针对不同应用场景的完整实验方案,包括详细设备清单、连接示意图和数据处理方法。

联系获取完整方案

厂家介绍

Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室

相关文章

  • 量子通信的主要工作原理是什么?

    在当今信息安全形势日益严峻的背景下,传统的加密技术正面临巨大挑战。你是否曾好奇,是否存在一种几乎无法被破解的通信方式?“**量子通信的主要工作原理是什么?**”这不仅是一个前沿的科学问题,更是电子电工行业未来发展的关键方向。它利用量子力学的基本原理,如量子叠加和量子纠缠,为信息传输构建了一道天然的安全屏障,其潜力远超基于计算复杂性的经典加密算法。对于从事光纤

  • 虚拟仪器技术在各领域都有着怎样的用途?

    在当今飞速发展的科技时代,测量与测试的精确性和效率直接决定了研发和生产的质量。传统的固定功能仪器虽然稳定,但往往价格昂贵、升级困难且灵活性不足。那么,有没有一种技术能够打破这些壁垒,实现“一机多用”并适应各种复杂场景呢?答案就是虚拟仪器技术。虚拟仪器技术在各领域都有着怎样的用途?它如何通过软件定义硬件的核心思想,重塑我们从电子研发到工业制造的测试测量方式?理

  • 光通信模块行业龙头

    在数字化浪潮席卷全球的今天,高速、稳定的信息传输已成为社会运转的命脉。作为信息高速公路的核心“收费站”,光通信模块的性能直接决定了数据流的快慢与容量。在这个技术密集、竞争激烈的赛道中,谁能占据光通信模块行业龙头地位,谁就掌握了未来通信产业的制高点。这些领军企业不仅驱动着数据中心、5G乃至6G网络的演进,其技术突破更是深刻影响着从配电系统智能化到工业自动化等多

  • vcsel芯片主要生产厂商

    随着3D传感、高速通信等技术的飞速发展,VCSEL芯片(垂直腔面发射激光器)作为核心光源,其重要性日益凸显。与传统的边发射激光器相比,VCSEL芯片在效率、可靠性、光束质量及低成本大规模生产上展现出巨大优势。因此,选择技术实力雄厚、质量稳定的VCSEL芯片主要生产厂商,成为电子工程师、系统集成商和采购决策者面临的关键问题。这直接关系到终端产品,无论是用于数据

立即咨询

加载中....

获取实验方案

称呼

电话

+86

单位名称

用途