在当今信息安全形势日益严峻的背景下,传统的加密技术正面临巨大挑战。你是否曾好奇,是否存在一种几乎无法被破解的通信方式?“**量子通信的主要工作原理是什么?**”这不仅是一个前沿的科学问题,更是电子电工行业未来发展的关键方向。它利用量子力学的基本原理,如量子叠加和量子纠缠,为信息传输构建了一道天然的安全屏障,其潜力远超基于计算复杂性的经典加密算法。对于从事光纤
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 反射镜类型 / Mirror Type : Off-Axis Parabolic Mirror, Parabolic Mirror
- 反射镜形状 / Mirror Shape : Parabolic
- 波长区域 / Wavelength Region : UV
- 反射焦距公差 / Reflected Focal Length Tolerance : ±1%
- 基底/材料 / Substrate/Material : Aluminum
- 镀膜材料 / Coating Material : Aluminum
- 反射镜厚度 / Mirror Thickness : 18.8 mm (0.74 Inch )
- 表面质量 / Surface Quality : 40-20 scratch-dig
规格书
请提供您的邮箱下载规格书
怎么称呼您
接收邮箱
AI 智能分析
该产品已被3篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
高功率飞秒激光脉冲作用下铁靶表面预等离子体的干涉显微镜研究
干涉显微镜 飞秒脉冲 电子加速机制 热电子
采用对比度为10^7的Cr:镁橄榄石激光系统发射飞秒脉冲,通过时间分辨干涉显微镜测量了在强度为10^16 W/cm2的飞秒激光脉冲辐照下,块体铁靶表面形成等离子体的特征扩散尺度。实验证明该技术在相关测量中具有高效性。实验表明,受激光脉冲作用后,密度超过临界值的等离子体层位移不超过30纳米。
查看全文 > -
利用硫化铅纳米颗粒实现271至308微米可调谐被动调Q掺镝光纤激光器
掺杂Dy3+的ZBLAN光纤激光器 被动调Q 硫化铅纳米粒子 中红外 可调谐
据我们所知,我们首次展示了一种基于PbS纳米颗粒作为可饱和吸收体(SA)的1.1 μm泵浦、3 μm附近宽调谐被动调Q Dy3+掺杂ZBLAN光纤激光器。在2.87 μm波长处,测得该SA的调制深度为12.5%,饱和强度为1.10 MW/cm2。实现了2.71-3.08 μm(约370 nm)波长范围内的稳定调Q输出——据我们所知,这是脉冲稀土掺杂光纤激光器达到的最宽调谐范围。实验获得最大输出功率252.7 mW,对应脉冲能量1.51 μJ、脉宽795 ns、重复频率166.8 kHz。该成果表明Dy3+是3 μm波段可调谐脉冲光源的理想增益介质,同时据我们所知首次展示了PbS作为中红外可饱和吸收体的应用潜力。
查看全文 > -
用于研究高功率飞秒激光脉冲形成的非理想等离子体的时间分辨干涉显微镜
飞秒激光脉冲 时间分辨干涉显微镜 等离子体密度不均匀性 非理想等离子体
展示了在强度为10^16 W/cm2的飞秒激光脉冲作用下,块状铁靶表面等离子体密度特征尺寸的测量结果。研究采用时间分辨干涉显微技术进行,使用铬:镁橄榄石激光系统产生的具有10^7高时间对比度的飞秒激光脉冲。所选技术的有效性得到验证,测得等离子体不均匀性尺寸小于30纳米。
查看全文 >
-
物理学实验方案1
1. 实验设计与方法选择:采用时间分辨干涉显微镜测量等离子体扩散的特征尺度。该技术使用Cr:镁橄榄石激光系统发射的飞秒脉冲,其强度对比度为10^7。 2. 样本选择与数据来源:以块状铁靶材作为样本,通过飞秒激光脉冲进行辐照。 3. 实验设备与材料清单:包括基于主动Cr:镁橄榄石元件的太瓦级飞秒红外激光系统、延迟线、空间滤波器、一组中性滤光片、微透镜、抛物面镜、真空腔室及CCD相机。 4. 实验流程与操作步骤:采用泵浦-探测方案,将激光辐射分为泵浦光束和探测光束,通过调节泵浦与探测脉冲间的延迟时间研究预等离子体形成与膨胀的动力学过程。 5. 数据分析方法:通过分析复反射系数相位的空域分布来确定等离子体层的变化。
获取完整方案 -
光电信息科学与工程实验方案
1. 实验设计与方法选择:该研究采用PbS纳米颗粒作为可饱和吸收体,在掺Dy3?的ZBLAN光纤激光器中实现了约3微米波段的可调谐被动调Q运转。 2. 样本选择与数据来源:PbS纳米颗粒分散液通过溶胶-凝胶法合成。激光系统包含自制Yb3?掺杂光纤激光器作为泵浦源,以及掺Dy3?的ZBLAN光纤作为增益介质。 3. 实验设备与材料清单:设备包括自制Yb3?掺杂光纤激光器、掺Dy3?的ZBLAN光纤、PbS纳米颗粒分散液,以及二向色镜和离轴抛物面反射镜等光学元件。 4. 实验步骤与操作流程:通过Littman构型的平面刻线光栅调节激光波长,并监测输出功率、时域特性及光谱。 5. 数据分析方法:采用功率依赖测量装置表征PbS纳米颗粒的非线性吸收特性,并基于输出功率、脉冲宽度和重复频率分析激光性能。
获取完整方案 -
物理学实验方案2
1. 实验设计与方法选择:本研究采用时间分辨干涉显微镜技术,研究飞秒激光脉冲作用下铁靶表面的等离子体形成与扩展过程。 2. 样本选择与数据来源:使用具有特定尺寸和表面粗糙度的块状圆柱形铁样品。 3. 实验设备与材料清单:包括铬:镁橄榄石激光系统、迈克尔逊干涉仪、CCD相机(SensiCam QE,PCO)及各类光学元件。 4. 实验流程与操作步骤:实验设置采用泵浦-探测方案,包含精确延迟控制、空间滤波及干涉图记录。 5. 数据分析方法:利用干涉图处理的傅里叶方法分析反射探测辐射的相位变化。
获取完整方案
厂家介绍
Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室
智推产品
动态资讯
-
压力传感器的使用方法
2025-10-01 14:30:47
-
电压表如何进行读数?有哪些使用注意事项?
2025-09-22 17:00:57
-
截止滤光片和带通滤光片
2025-11-21 09:00:42
-
钽电容和陶瓷电容两者有什么区别?如何进行读数?
2025-09-20 19:21:02
科学论文
相关产品
-
PS 975 M-M01安装式25.4mm后向反射器
光学反射镜
索雷博
有效孔径: ?17.8mm 直径公差: +0/-0.1mm 表面质量: 40-20 Scratch-Dig
PS975M-M01是一款安装在直径为25.4mm的反射器,具有高精度光学性能和耐用的结构设计。
相关文章
-
-
在当今飞速发展的科技时代,测量与测试的精确性和效率直接决定了研发和生产的质量。传统的固定功能仪器虽然稳定,但往往价格昂贵、升级困难且灵活性不足。那么,有没有一种技术能够打破这些壁垒,实现“一机多用”并适应各种复杂场景呢?答案就是虚拟仪器技术。虚拟仪器技术在各领域都有着怎样的用途?它如何通过软件定义硬件的核心思想,重塑我们从电子研发到工业制造的测试测量方式?理
-
在数字化浪潮席卷全球的今天,高速、稳定的信息传输已成为社会运转的命脉。作为信息高速公路的核心“收费站”,光通信??榈男阅苤苯泳龆耸萘鞯目炻肴萘?。在这个技术密集、竞争激烈的赛道中,谁能占据光通信??樾幸盗返匚?,谁就掌握了未来通信产业的制高点。这些领军企业不仅驱动着数据中心、5G乃至6G网络的演进,其技术突破更是深刻影响着从配电系统智能化到工业自动化等多
-
随着3D传感、高速通信等技术的飞速发展,VCSEL芯片(垂直腔面发射激光器)作为核心光源,其重要性日益凸显。与传统的边发射激光器相比,VCSEL芯片在效率、可靠性、光束质量及低成本大规模生产上展现出巨大优势。因此,选择技术实力雄厚、质量稳定的VCSEL芯片主要生产厂商,成为电子工程师、系统集成商和采购决策者面临的关键问题。这直接关系到终端产品,无论是用于数据
加载中....
称呼
电话
单位名称
用途