修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

全部产品分类
MPD269-P01 光学反射镜

MPD269-P01

分类: 光学反射镜

厂家: 索雷博

产地: 美国

型号: MPD269-P01

更新时间: 2024-06-05T09:47:00.000Z

产品价格:

立即查看报价

2 Inch 90° Off-Axis Parabolic Mirror, Prot. Silver, RFL = 6 Inch

下载规格书 下载规格书 立即咨询 获取报价 获取报价
收藏 收藏

顶刊高频之选

  • 专业选型 专业选型
  • 正规认证 正规认证
  • 品质保障 品质保障

严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。

概述

Thorlabs Inc的MPD269-P01是一款光学反射镜,波长范围为450 nm至2μm,反射镜厚度为62.8 mm(2.47英寸),反射镜直径为50.8 mm(2英寸)。有关MPD269-P01的更多详细信息,请联系我们。

参数

  • 反射镜类型 / Mirror Type : Off-Axis Parabolic Mirror, Parabolic Mirror
  • 反射镜形状 / Mirror Shape : Parabolic
  • 父焦距公差 / Parent Focal Length Tolerance : ±1%
  • 反射焦距公差 / Reflected Focal Length Tolerance : ±1%
  • 基底/材料 / Substrate/Material : Aluminum
  • 镀膜材料 / Coating Material : Silver
  • 反射镜直径 / Mirror Diameter : 50.8 mm (2 Inch )
  • 表面质量 / Surface Quality : 40-20 scratch-dig

规格书

请提供您的邮箱下载规格书

怎么称呼您

接收邮箱

发送申请

AI 智能分析

SCI论文引用分析

该产品已被4篇SCI论文引用

基于平台30万篇光学领域SCI论文分析

  • 基于漫反射的单端激光吸收传感器用于煤油燃料燃烧室中H2O的温度和浓度测量
    单端 湍流环境 燃烧诊断 激光吸收传感 煤油燃料燃烧室

    本文介绍了一种基于漫反射壁面信号的小型单端激光吸收传感器的设计、优化及验证方法,用于煤油燃料航空燃烧室内的温度与H2O浓度测量。此类严苛实际燃烧环境中的激光测量面临光束偏转强、信噪比低及光学通路受限等挑战。我们详细阐述了采用离轴抛物面镜(带孔径)作为收发光学元件、燃烧室积碳壁面作为漫反射体的单端光学构型特性与优化流程。使用1.4微米近红外分布反馈式二极管激光器(1kHz扫描频率进行直接吸收检测),通过探测两条H2O吸收谱线实现浓度与温度测量。结合光学系统设计与自适应Savitzky-Golay信号处理算法抑制噪声并提升信噪比。该传感器在煤油燃料旋流燃烧室的实际工况下完成验证:尽管反射激光强度仅约50微瓦,仍获得高保真信号,实现单次扫描H2O浓度检测限122 ppm·m·Hz^-1/2。原位时域测量显示当全局当量比在0.2至0.45变化时,温度范围约1100-1300K,H2O浓度约8%-12%。结果呈现预期趋势,且相比对比热电偶展现出更快的响应速度与更小的延迟。该现场验证直接证明了基于漫反射的单端传感器系统在发动机燃烧室环境中的鲁棒性与可靠性。

    查看全文 >
  • 高功率飞秒激光脉冲作用下铁靶表面预等离子体的干涉显微镜研究
    干涉显微镜 飞秒脉冲 电子加速机制 热电子

    采用对比度为10^7的Cr:镁橄榄石激光系统发射飞秒脉冲,通过时间分辨干涉显微镜测量了在强度为10^16 W/cm2的飞秒激光脉冲辐照下,块体铁靶表面形成等离子体的特征扩散尺度。实验证明该技术在相关测量中具有高效性。实验表明,受激光脉冲作用后,密度超过临界值的等离子体层位移不超过30纳米。

    查看全文 >
  • 利用硫化铅纳米颗粒实现271至308微米可调谐被动调Q掺镝光纤激光器
    掺杂Dy3+的ZBLAN光纤激光器 被动调Q 硫化铅纳米粒子 中红外 可调谐

    据我们所知,我们首次展示了一种基于PbS纳米颗粒作为可饱和吸收体(SA)的1.1 μm泵浦、3 μm附近宽调谐被动调Q Dy3+掺杂ZBLAN光纤激光器。在2.87 μm波长处,测得该SA的调制深度为12.5%,饱和强度为1.10 MW/cm2。实现了2.71-3.08 μm(约370 nm)波长范围内的稳定调Q输出——据我们所知,这是脉冲稀土掺杂光纤激光器达到的最宽调谐范围。实验获得最大输出功率252.7 mW,对应脉冲能量1.51 μJ、脉宽795 ns、重复频率166.8 kHz。该成果表明Dy3+是3 μm波段可调谐脉冲光源的理想增益介质,同时据我们所知首次展示了PbS作为中红外可饱和吸收体的应用潜力。

    查看全文 >
查看全部4篇引用论文
实验方案推荐
AI分析生成
  • 精密仪器实验方案

    1. 实验设计与方法选择:采用单端光学配置,使用带孔离轴抛物面镜作为发射接收光学元件,燃烧室焦黑壁面作为漫反射体。使用近红外分布式反馈二极管激光器(波长约1.4微米,扫描频率1kHz)进行直接吸收检测,通过探测两条水分子跃迁谱线实现浓度和温度测量。采用光学系统设计和自适应Savitzky-Golay信号处理算法进行噪声抑制与信噪比优化。 2. 样本选择与数据来源:清华大学APL实验室的煤油燃料旋流燃烧室,其燃烧特性与航空煤油Jet-A高度相似。 3. 实验设备与材料清单:NTT电子公司DFB二极管激光器(工作波长1398nm,输出功率约15mW)、Thorlabs公司镀金离轴抛物面镜(MPD249V-M01,带通孔)、2°楔形石英窗、Spectrogon公司窄带滤光片(NB-1398-010nm)、Thorlabs公司光电探测器(PDA50B-EC)、硅标准具(自由光谱范围0.03438cm?1)。 4. 实验流程与操作步骤:通过软件控制函数发生器以1kHz锯齿波扫描激光波长来获取目标吸收谱线。激光束经镀金离轴抛物面镜(带通孔)和2°楔形石英窗导入燃烧室,在距喷嘴下游约240mm的对向壁面形成光路。 5. 数据分析方法:采用自适应Savitzky-Golay(S-G)平滑算法处理吸收信号。

    获取完整方案
  • 物理学实验方案

    1. 实验设计与方法选择:采用时间分辨干涉显微镜测量等离子体扩散的特征尺度。该技术使用Cr:镁橄榄石激光系统发射的飞秒脉冲,其强度对比度为10^7。 2. 样本选择与数据来源:以块状铁靶材作为样本,通过飞秒激光脉冲进行辐照。 3. 实验设备与材料清单:包括基于主动Cr:镁橄榄石元件的太瓦级飞秒红外激光系统、延迟线、空间滤波器、一组中性滤光片、微透镜、抛物面镜、真空腔室及CCD相机。 4. 实验流程与操作步骤:采用泵浦-探测方案,将激光辐射分为泵浦光束和探测光束,通过调节泵浦与探测脉冲间的延迟时间研究预等离子体形成与膨胀的动力学过程。 5. 数据分析方法:通过分析复反射系数相位的空域分布来确定等离子体层的变化。

    获取完整方案
  • 光电信息科学与工程实验方案

    1. 实验设计与方法选择:该研究采用PbS纳米颗粒作为可饱和吸收体,在掺Dy3?的ZBLAN光纤激光器中实现了约3微米波段的可调谐被动调Q运转。 2. 样本选择与数据来源:PbS纳米颗粒分散液通过溶胶-凝胶法合成。激光系统包含自制Yb3?掺杂光纤激光器作为泵浦源,以及掺Dy3?的ZBLAN光纤作为增益介质。 3. 实验设备与材料清单:设备包括自制Yb3?掺杂光纤激光器、掺Dy3?的ZBLAN光纤、PbS纳米颗粒分散液,以及二向色镜和离轴抛物面反射镜等光学元件。 4. 实验步骤与操作流程:通过Littman构型的平面刻线光栅调节激光波长,并监测输出功率、时域特性及光谱。 5. 数据分析方法:采用功率依赖测量装置表征PbS纳米颗粒的非线性吸收特性,并基于输出功率、脉冲宽度和重复频率分析激光性能。

    获取完整方案

获取完整实验方案

我们还有1 个针对不同应用场景的完整实验方案,包括详细设备清单、连接示意图和数据处理方法。

联系获取完整方案

厂家介绍

Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室

相关产品

图片 名称 分类 制造商 参数 描述

相关文章

  • 光分插复用器的优缺点

    在现代光通信网络中,高效、灵活地管理日益增长的数据流量是核心挑战。作为波分复用(WDM)系统中的关键节点设备,光分插复用器(OADM)发挥着不可或缺的作用。它允许在中间站节点直接上下(Add/Drop)特定波长的光信号,而无需将所有信号进行光电转换,极大地提升了网络效率和灵活性。因此,深入剖析光分插复用器的优缺点,对于网络规划工程师、系统集成商乃至配电系统设

  • 研究人员如何使紫外线屏蔽可持续

    紫外线辐射危害健康与材料,因臭氧层损耗等风险加剧。传统防护技术存资源、污染问题,需更可持续替代方案。

  • 根据数据分析LED芯片的市场发展

    在当今快速发展的电子电工领域,LED芯片作为核心的半导体器件,其市场动向直接关系到从照明到显示、从汽车电子到智能家居等一系列产业的兴衰。然而,市场充满了不确定性,仅凭经验或直觉做出决策的风险极高。因此,通过科学的数据分析来洞察LED芯片的市场发展趋势,对于制造商、分销商、方案设计师乃至使用这些芯片构建配电系统的工程师而言,都变得至关重要。本文将深入探讨如何借

  • 气体放电灯触发器

    在众多电工工具与照明设备中,气体放电灯触发器是一个虽不显眼却至关重要的核心部件。无论是大型体育场的氙气灯、工业厂房的金属卤化物灯,还是部分高压钠灯,其启动和稳定工作都离不开一个性能卓越的触发器。它如同心脏的起搏器,负责产生一个瞬间的高压脉冲,击穿灯管内的气体,从而引发气体放电发光。然而,在实际的配电系统应用中,触发器选型不当、安装错误或老化失效等问题屡见不鲜

立即咨询

加载中....

获取实验方案

称呼

电话

+86

单位名称

用途