修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Soft tissue cutting efficiency by 980?nm laser with carbon-, erbium-, and titanium-doped optothermal fiber converters

DOI:10.1002/lsm.23006 期刊:Lasers in Surgery and Medicine 出版年份:2018 更新时间:2025-10-24 16:41:07
摘要: Objectives: The use of near-IR diode lasers for contact soft tissue surgery is attended by a risk of severe thermal damage of surrounding tissues due to the low cutting efficiency of these lasers. To increase the cutting efficiency tips of a near-IR lasers in contact surgery special (converters) which transform laser light to heat are used. The present in vivo study evaluated temperature dynamics and soft tissue cutting efficiency of 980 nm diode laser equipped with standard carbon- and novel erbium- and titanium-doped converters. Materials and Methods: For in vitro treatment on soft tissue (chicken thigh), 980 nm diode laser was used. The radiation was delivered to the tissue by a quartz fiber with a core diameter of 400 ± 5 mm. The carbon-, erbium-, or titanium-doped converters were mounted at the fiber distal end. The converters temperature was measured by IR-sensor integrated into the laser radiation delivery system. The temperature dynamics of each converter during soft tissue treatment was evaluated. The converter was in contact with the soft tissue surface and moved across the surface of soft tissue with a speed of 1, 3, or 6 mm/s. The average power of laser radiation was 0.3, 1.0, or 4.0 W. The collateral thermal damage of treated soft tissues was evaluated using NTBC stain. The width and depth of coagulation and ablation zones of laser wounds was determined. The soft tissue cutting efficiency with different converters was calculated. Results: The cutting efficiency, collateral damage, and converter temperature in contact with soft tissue change depending on the type of converter, the power of laser radiation and the converter movement speed along the temperature tissue (1,980 ± 154 °C), at which a tissue cut takes place, was fixed for Ti-doped converter for laser power of 4.0 W and movement speed of 1 mm/s. Minimal converter temperature (540 ± 30 °C), at which a tissue cut takes place, was fixed for Ti-doped converter for laser power of 1.0 W and movement speed of 6 mm/s. Maximal depth of coagulation (0.72 ± 0.10 mm) was fixed for Ti-doped converter for laser power of 4.0 W and movement speed of 1 mm/s. Minimal depth of coagulation (0.11 ± 0.02 mm) was fixed for C-doped converter for laser power of 0.3 W and movement speed of 3 mm/s. Maximal cutting efficiency (0.57 mm3/W) was fixed for Er-doped converter for laser power of 1.0 W and movement speed of 1 mm/s. Minimal cutting efficiency (0.02 mm3/W) was fixed for C-doped converter for laser power of 4.0 W and movement speed of 6 mm/s. Conclusion: All three studied types of converters can be used for contact surgery of soft tissues by 980 nm diode laser. Er-doped and Ti-doped converters are more resistant to laser heating then C-doped converter, they dissect soft tissue more effectively. This will also expand the potential of everyday routine clinical procedures, making them safer, faster, and easier. These converters can be used in general surgery, plastic surgery, dermatology, angioplasty, dentistry, neurosurgery, etc. Lasers Surg. Med. 9999:1–16, 2018. ? 2018 Wiley Periodicals, Inc.
作者: Andrey V. Belikov,Alexei V. Skrypnik
AI智能分析
纠错
研究概述 实验方案 设备清单

Investigating the efficiency and thermal dynamics of 980 nm diode laser equipped with carbon-, erbium-, and titanium-doped optothermal fiber converters for soft tissue cutting.

Er-doped and Ti-doped converters are more resistant to laser heating and dissect soft tissue more effectively than C-doped converters. They offer potential for safer, faster, and easier clinical procedures in various medical fields.

The study was conducted in vitro on chicken thigh, which may not fully replicate human soft tissue behavior. The resistance of C-doped converters to laser heating is limited, affecting their longevity and stability during tissue excision.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Soft tissue cutting efficiency by 980?nm laser with carbon-, erbium-, and titanium-doped optothermal fiber converters”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期