修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

Grain Boundaries Limit the Charge Carrier Transport in Pulsed Laser Deposited ?±-SnWO <sub/>4</sub> Thin Film Photoabsorbers

DOI:10.1021/acsaem.0c00028 期刊:ACS Applied Energy Materials 出版年份:2020 更新时间:2025-09-23 15:19:57
摘要: Recently, α-SnWO4 attracted attention as a material to be used as a top absorber in a tandem device for photoelectrochemical water splitting due to its nearly optimum bandgap of ~1.9?eV and an early photocurrent onset potential of ~0 V vs. RHE. However, the mismatch between the charge carrier diffusion length and light penetration depth—which is typical for metal oxide semiconductors—currently hinders the realization of high photoconversion efficiencies. In this work, the pulsed laser deposition process and annealing treatment of α-SnWO4 thin films are elucidated in order to optimize their charge carrier transport properties. A high temperature treatment is found to enhance the photoconductivity of α-SnWO4 by more than one order of magnitude, as measured with time-resolved microwave conductivity (TRMC). A complimentary analysis by time-resolved terahertz spectroscopy (TRTS) shows that this improvement can be assigned to an increase of the grain size in the heat-treated films. In addition, TRTS reveals electron-hole charge carrier mobilities of up to 0.13 cm2 V-1s-1 in α-SnWO4. This is comparable to values found for BiVO4, which is one of the best performing metal oxide photoanode materials to date. These findings show that there is a significant potential for further improving the properties of α-SnWO4 photoanodes.
作者: Moritz K?lbach,Hannes Hempel,Karsten Harbauer,Markus Schleuning,Andrei Petsiuk,Katja H?flich,Victor Deinhart,Dennis Friedrich,Rainer Eichberger,Fatwa F. Abdi,Roel van de Krol
AI智能分析
纠错
研究概述 实验方案 设备清单

The generation of hydrogen fuel by direct photoelectrochemical solar water splitting in a dual absorber tandem device offers a promising pathway for a sustainable future energy scenario. However, even though much progress has been made in the past decades, the commercialization potential of this approach is still unclear. One of the main bottlenecks is the identification of photoelectrode materials that are not only efficient, but also low-cost and stable on a time-scale of years. The best performing solar water splitting devices use high-quality III-V semiconductors, e.g., GaInP and GaInAs, as the top and bottom absorbers, respectively. These devices already show impressive solar-to-hydrogen (STH) efficiencies (up to 19%), but the long term stability and the high costs still prohibit practical applications. Other demonstrations are based on earth-abundant metal oxide photoelectrodes in combination with a Si-solar cell as a bottom absorber, or on combinations of two metal oxides in an all-oxide device. In general, these devices have the potential to be highly stable and low-cost, but the reported STH efficiencies have been modest thus far (~8%). This trade-off between efficiency, cost, and stability needs to be overcome in order to realize practical and scalable photoelectrochemical water splitting solutions.

In summary, the study systematically investigated the structure, morphology, and charge carrier dynamics of pulsed laser-deposited α-SnWO4 films as a function of the deposition parameters and post-deposition annealing conditions. TRTS measurements revealed an upper limit for the combined electron-hole mobility of ~0.13?cm2?V-1?s-1, which is comparable to values reported for high efficiency BiVO4 photoelectrodes. The presence of grain boundaries significantly affects the carrier transport properties of α-SnWO4, with increasing crystallite domain size leading to a more than 10× higher photoconductivity measured by TRMC. The improvement does not saturate at 100 nm, suggesting that the photoconductivity of α-SnWO4 films can be further improved by growing films with larger domains/grains or even epitaxial films.

The study identifies that the photoelectrochemical performance of PLD-deposited films is currently still limited by rapid surface passivation due to SnO2 formation (for unprotected α-SnWO4 films) or by trap states at the α-SnWO4/NiOx interface (for protected films). Additionally, the influence of the slight W-enrichment as well as the presence of small amounts of Sn4+ in the films on the charge carrier transport should be clarified.

SCI高频之选
查看全部>
  • AQ6370D
    AQ6370D
    463

    型号:AQ6370D

    厂家:Yokogawa

    智能分析: Yokogawa AQ6370D是一款性能卓越的光谱分析仪,适用于光通信领域以及光放大器(EDFA)的测量和评估。其高波长分辨率、精准度和宽动态范围使其成为实验室和工业环境中的理想选择。虽然设备体积较大且预热时间较长,但其丰富的接口和出色的显示屏设计弥补了这些不足,整体是一款值得推荐的光谱分析仪。
    获取实验方案
  • ZEISS EVO Family

    型号:ZEISS EVO Family

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS EVO系列是一款高性能??榛璧缱酉晕⒕?,适用于材料科学、生命科学及工业质量控制等领域。其先进的技术特性包括高分辨率、广泛加速电压范围和集成EDS系统。该产品操作直观,支持多用户环境,适合科学研究和工业应用。然而,价格信息缺失以及潜在的维护成本可能是其需要注意的方面。总体而言,ZEISS EVO系列表现优秀,值得推荐给专业用户。
    获取实验方案
  • Crossbeam Family

    型号:Crossbeam Family350/550

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Crossbeam系列是蔡司公司推出的一款高端光电分析设备,结合了场发射扫描电子显微镜(FE-SEM)和聚焦离子束(FIB)的功能,适用于材料科学、纳米技术和半导体行业等多个领域。其高分辨率成像能力和自动化样品制备功能使其成为高通量分析的理想选择。此外,该设备支持多种检测器,具备强大的多功能性,是高精度研究和工业应用的利器。然而,由于其高端定位,设备成本较高且操作需要专业技能。总体而言,该设备表现卓越,为科学研究和工业应用提供了先进的解决方案。
    获取实验方案
  • Axio Observer

    型号:Axio Observer

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: Axio Observer是一款专为金相学研究设计的倒置显微镜系统,以其高效的设计和蔡司知名的光学技术为特色。它能够快速、灵活地分析大量样品,并支持自动化操作,适用于多种应用场景,包括晶粒尺寸分析、非金属夹杂物检测等。然而,其重量较大且光源寿命较短,可能对使用者提出了额外的维护和空间管理需求。总体而言,这款产品在性能和可靠性方面表现出色,特别适合专业实验室使用。
    获取实验方案
  • ZEISS LSM 990 Spectral Multiplex

    型号:ZEISS LSM 990 Spectral Multiplex

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS LSM 990 Spectral Multiplex是一款定位于高端科研机构的光谱成像系统,具有卓越的光谱分辨率和自动化功能,适用于复杂的生物、医学及材料科学实验。其高效的荧光标签分离能力和多功能自动化设计为用户提供了强大的实验支持。然而,高昂的价格和一定的学习曲线可能对中小型实验室构成挑战。总体而言,这是一款性能优越、适应性强的高端实验设备。
    获取实验方案
  • ZEISS Sigma 300 with RISE

    型号:ZEISS Sigma 300 with RISE

    厂家:Carl Zeiss Microscopy GmbH

    智能分析: ZEISS Sigma 300 with RISE是蔡司公司推出的一款高端光谱分析仪,集成了拉曼成像和扫描电子显微镜技术,能够提供高质量的化学和结构分析。其功能强大,支持多领域应用,但设备价格较高且操作学习曲线可能较陡。适用于科研机构和高端实验室,是材料科学和生命科学领域的理想选择。
    获取实验方案
立即咨询

加载中....

论文纠错

您正在对论文“Grain Boundaries Limit the Charge Carrier Transport in Pulsed Laser Deposited ?±-SnWO <sub/>4</sub> Thin Film Photoabsorbers”进行纠错

纠错内容

联系方式(选填)

设备询价

称呼

电话

+86

单位名称

用途

期望交货周期

产品预约

称呼

电话

+86

单位名称

用途

期望交货周期